File size: 8,544 Bytes
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# -*- coding: utf-8 -*-

'''
@Author     : Jiangjie Chen
@Time       : 2020/8/18 14:40
@Contact    : [email protected]
@Description:
'''

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import RobertaModel, BertPreTrainedModel, RobertaConfig
from .checker_utils import attention_mask_to_mask, ClassificationHead, soft_logic, build_pseudo_labels, \
    get_label_embeddings, temperature_annealing


class RobertaChecker(BertPreTrainedModel):
    config_class = RobertaConfig
    base_model_prefix = "roberta"

    def __init__(self, config, logic_lambda=0.0, prior='nli', m=8, temperature=1):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.hidden_size = config.hidden_size
        self.roberta = RobertaModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self._lambda = logic_lambda
        self.prior = prior
        self.temperature = temperature
        self._step = 0

        # general attention
        self.linear_self_attn = nn.Linear(self.hidden_size, 1, bias=False)
        self.linear_m_attn = nn.Linear(self.hidden_size * 2, 1, bias=False)

        self.var_hidden_size = self.hidden_size // 4

        z_hid_size = self.num_labels * m
        self.linear_P_theta = nn.Linear(self.hidden_size * 2 + z_hid_size, self.var_hidden_size)
        y_hid_size = self.var_hidden_size
        self.linear_Q_phi = nn.Linear(self.hidden_size * 2 + y_hid_size, self.var_hidden_size)

        # TODO: y_clf => classifier. compromise for mnli
        self.classifier = ClassificationHead(self.var_hidden_size, self.num_labels,
                                             config.hidden_dropout_prob)  # label embedding for y
        self.z_clf = self.classifier
        self.init_weights()

    def forward(self, claim_input_ids, claim_attention_mask, claim_token_type_ids,
                qa_input_ids_list, qa_attention_mask_list, qa_token_type_ids_list,
                nli_labels=None, labels=None):
        '''
        m: num of questions; n: num of evidence; k: num of candidate answers
        :param claim_input_ids: b x L1
        :param claim_attention_mask: b x L1
        :param claim_token_type_ids: b x L1
        :param qa_input_ids_list: b x m x L2
        :param qa_attention_mask_list: b x m x L2
        :param qa_token_type_ids_list: b x m x L2
        :param nli_labels: b x m x 3
        :param labels: (b,)
        :return: (loss, (neg_elbo, logic_loss), y, m_attn, (z_softmax, mask))
        '''
        self._step += 1
        _zero = torch.tensor(0.).to(claim_input_ids.device)

        # ====================== Representation learning =======================
        global_output = self.roberta(claim_input_ids, attention_mask=claim_attention_mask)[0]  # b x L1 x h
        global_output = self.self_select(global_output)  # b x h

        _qa_input_ids_list = qa_input_ids_list.transpose(1, 0)  # m x b x L2
        _qa_attention_mask_list = qa_attention_mask_list.transpose(1, 0)

        local_output_list = []
        for _inp, _attn in zip(_qa_input_ids_list, _qa_attention_mask_list):
            _local_output = self.roberta(_inp, attention_mask=_attn)[0]
            _local_output = self.self_select(_local_output)
            local_output_list.append(_local_output)

        _local_outputs = torch.stack(local_output_list, 0)  # m x b x h
        local_outputs = _local_outputs.transpose(1, 0).contiguous()  # b x m x h

        neg_elbo, loss, logic_loss = _zero, _zero, _zero
        mask = attention_mask_to_mask(qa_attention_mask_list)
        # b x h, b x m x h -> b x h
        local_outputs_w, m_attn = self.local_attn(global_output, local_outputs, mask)
        local_outputs = torch.cat([local_outputs, global_output.unsqueeze(1).repeat(1, local_outputs.size(1), 1)], -1)

        if labels is not None:
            # Training
            # ======================== Q_phi ================================

            labels_onehot = F.one_hot(labels, num_classes=self.num_labels).to(torch.float)
            y_star_emb = get_label_embeddings(labels_onehot, self.classifier.out_proj.weight)  # b x h
            z = self.Q_phi(local_outputs, y_star_emb)
            z_softmax = z.softmax(-1)

            # ======================== P_theta ==============================

            z_gumbel = F.gumbel_softmax(z, tau=temperature_annealing(self.temperature, self._step),
                                        dim=-1, hard=True)  # b x m x 3
            y = self.P_theta(global_output, local_outputs_w, z_gumbel)

            # ======================== soft logic ===========================
            mask = mask.to(torch.int)
            y_z = soft_logic(z_softmax, mask)  # b x 3
            logic_loss = F.kl_div(y.log_softmax(-1), y_z)

            # ======================== ELBO =================================
            elbo_neg_p_log = F.cross_entropy(y.view(-1, self.num_labels), labels.view(-1))
            if self.prior == 'nli':
                prior = nli_labels.softmax(dim=-1)
            elif self.prior == 'uniform':
                prior = torch.tensor([1 / self.num_labels] * self.num_labels).to(mask.device)
                prior = prior.unsqueeze(0).unsqueeze(0).repeat(mask.size(0), mask.size(1), 1)
            elif self.prior == 'logic':
                prior = build_pseudo_labels(labels, m_attn)
            else:
                raise NotImplementedError(self.prior)

            elbo_kl = F.kl_div(z_softmax.log(), prior)
            neg_elbo = elbo_kl + elbo_neg_p_log

            loss = (1 - abs(self._lambda)) * neg_elbo + abs(self._lambda) * logic_loss
        else:
            # Inference
            if self.prior == 'nli':
                z = nli_labels
            elif self.prior == 'uniform':
                prior = torch.tensor([1 / self.num_labels] * self.num_labels).to(mask.device)
                z = prior.unsqueeze(0).unsqueeze(0).repeat(mask.size(0), mask.size(1), 1)
            else:
                z = torch.rand([local_outputs.size(0), local_outputs.size(1), self.num_labels]).to(local_outputs)
            z_softmax = z.softmax(-1)

            for i in range(3):  # N = 3
                z = z_softmax.argmax(-1)
                z = F.one_hot(z, num_classes=3).to(torch.float)
                y = self.P_theta(global_output, local_outputs_w, z)
                y = y.softmax(-1)
                y_emb = get_label_embeddings(y, self.classifier.out_proj.weight)
                z = self.Q_phi(local_outputs, y_emb)
                z_softmax = z.softmax(-1)

        return (loss, (neg_elbo, logic_loss), y, m_attn, (z_softmax, mask))  # batch first

    def Q_phi(self, X, y):
        '''
        X, y => z
        :param X: b x m x h
        :param y_emb: b x 3 / b x h'
        :return: b x m x 3 (ref, nei, sup)
        '''
        y_expand = y.unsqueeze(1).repeat(1, X.size(1), 1)  # b x m x 3/h'
        z_hidden = self.linear_Q_phi(torch.cat([y_expand, X], dim=-1))  # b x m x h'
        z_hidden = F.tanh(z_hidden)
        z = self.z_clf(z_hidden)
        return z

    def P_theta(self, X_global, X_local, z):
        '''
        X, z => y*
        :param X_global: b x h
        :param X_local: b x m x h
        :param z: b x m x 3
        :param mask: b x m
        :return: b x 3, b x m
        '''
        b = z.size(0)
        # global classification
        _logits = torch.cat([X_local, X_global, z.reshape(b, -1)], dim=-1)
        _logits = self.dropout(_logits)
        _logits = self.linear_P_theta(_logits)
        _logits = torch.tanh(_logits)

        y = self.classifier(_logits)
        return y

    def self_select(self, h_x):
        '''
        self attention on a vector
        :param h_x: b x L x h
        :return: b x h
        '''
        w = self.dropout(self.linear_self_attn(h_x).squeeze(-1)).softmax(-1)
        return torch.einsum('blh,bl->bh', h_x, w)

    def local_attn(self, global_output, local_outputs, mask):
        '''
        :param global_output: b x h
        :param qa_outputs: b x m x h
        :param mask: b x m
        :return: b x h, b x m
        '''
        m = local_outputs.size(1)
        scores = self.linear_m_attn(torch.cat([global_output.unsqueeze(1).repeat(1, m, 1),
                                               local_outputs], dim=-1)).squeeze(-1)  # b x m
        mask = 1 - mask
        scores = scores.masked_fill(mask.to(torch.bool), -1e16)
        attn = F.softmax(scores, -1)
        return torch.einsum('bm,bmh->bh', attn, local_outputs), attn