Spaces:
Build error
Build error
File size: 8,544 Bytes
7f7285f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# -*- coding: utf-8 -*-
'''
@Author : Jiangjie Chen
@Time : 2020/8/18 14:40
@Contact : [email protected]
@Description:
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import RobertaModel, BertPreTrainedModel, RobertaConfig
from .checker_utils import attention_mask_to_mask, ClassificationHead, soft_logic, build_pseudo_labels, \
get_label_embeddings, temperature_annealing
class RobertaChecker(BertPreTrainedModel):
config_class = RobertaConfig
base_model_prefix = "roberta"
def __init__(self, config, logic_lambda=0.0, prior='nli', m=8, temperature=1):
super().__init__(config)
self.num_labels = config.num_labels
self.hidden_size = config.hidden_size
self.roberta = RobertaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self._lambda = logic_lambda
self.prior = prior
self.temperature = temperature
self._step = 0
# general attention
self.linear_self_attn = nn.Linear(self.hidden_size, 1, bias=False)
self.linear_m_attn = nn.Linear(self.hidden_size * 2, 1, bias=False)
self.var_hidden_size = self.hidden_size // 4
z_hid_size = self.num_labels * m
self.linear_P_theta = nn.Linear(self.hidden_size * 2 + z_hid_size, self.var_hidden_size)
y_hid_size = self.var_hidden_size
self.linear_Q_phi = nn.Linear(self.hidden_size * 2 + y_hid_size, self.var_hidden_size)
# TODO: y_clf => classifier. compromise for mnli
self.classifier = ClassificationHead(self.var_hidden_size, self.num_labels,
config.hidden_dropout_prob) # label embedding for y
self.z_clf = self.classifier
self.init_weights()
def forward(self, claim_input_ids, claim_attention_mask, claim_token_type_ids,
qa_input_ids_list, qa_attention_mask_list, qa_token_type_ids_list,
nli_labels=None, labels=None):
'''
m: num of questions; n: num of evidence; k: num of candidate answers
:param claim_input_ids: b x L1
:param claim_attention_mask: b x L1
:param claim_token_type_ids: b x L1
:param qa_input_ids_list: b x m x L2
:param qa_attention_mask_list: b x m x L2
:param qa_token_type_ids_list: b x m x L2
:param nli_labels: b x m x 3
:param labels: (b,)
:return: (loss, (neg_elbo, logic_loss), y, m_attn, (z_softmax, mask))
'''
self._step += 1
_zero = torch.tensor(0.).to(claim_input_ids.device)
# ====================== Representation learning =======================
global_output = self.roberta(claim_input_ids, attention_mask=claim_attention_mask)[0] # b x L1 x h
global_output = self.self_select(global_output) # b x h
_qa_input_ids_list = qa_input_ids_list.transpose(1, 0) # m x b x L2
_qa_attention_mask_list = qa_attention_mask_list.transpose(1, 0)
local_output_list = []
for _inp, _attn in zip(_qa_input_ids_list, _qa_attention_mask_list):
_local_output = self.roberta(_inp, attention_mask=_attn)[0]
_local_output = self.self_select(_local_output)
local_output_list.append(_local_output)
_local_outputs = torch.stack(local_output_list, 0) # m x b x h
local_outputs = _local_outputs.transpose(1, 0).contiguous() # b x m x h
neg_elbo, loss, logic_loss = _zero, _zero, _zero
mask = attention_mask_to_mask(qa_attention_mask_list)
# b x h, b x m x h -> b x h
local_outputs_w, m_attn = self.local_attn(global_output, local_outputs, mask)
local_outputs = torch.cat([local_outputs, global_output.unsqueeze(1).repeat(1, local_outputs.size(1), 1)], -1)
if labels is not None:
# Training
# ======================== Q_phi ================================
labels_onehot = F.one_hot(labels, num_classes=self.num_labels).to(torch.float)
y_star_emb = get_label_embeddings(labels_onehot, self.classifier.out_proj.weight) # b x h
z = self.Q_phi(local_outputs, y_star_emb)
z_softmax = z.softmax(-1)
# ======================== P_theta ==============================
z_gumbel = F.gumbel_softmax(z, tau=temperature_annealing(self.temperature, self._step),
dim=-1, hard=True) # b x m x 3
y = self.P_theta(global_output, local_outputs_w, z_gumbel)
# ======================== soft logic ===========================
mask = mask.to(torch.int)
y_z = soft_logic(z_softmax, mask) # b x 3
logic_loss = F.kl_div(y.log_softmax(-1), y_z)
# ======================== ELBO =================================
elbo_neg_p_log = F.cross_entropy(y.view(-1, self.num_labels), labels.view(-1))
if self.prior == 'nli':
prior = nli_labels.softmax(dim=-1)
elif self.prior == 'uniform':
prior = torch.tensor([1 / self.num_labels] * self.num_labels).to(mask.device)
prior = prior.unsqueeze(0).unsqueeze(0).repeat(mask.size(0), mask.size(1), 1)
elif self.prior == 'logic':
prior = build_pseudo_labels(labels, m_attn)
else:
raise NotImplementedError(self.prior)
elbo_kl = F.kl_div(z_softmax.log(), prior)
neg_elbo = elbo_kl + elbo_neg_p_log
loss = (1 - abs(self._lambda)) * neg_elbo + abs(self._lambda) * logic_loss
else:
# Inference
if self.prior == 'nli':
z = nli_labels
elif self.prior == 'uniform':
prior = torch.tensor([1 / self.num_labels] * self.num_labels).to(mask.device)
z = prior.unsqueeze(0).unsqueeze(0).repeat(mask.size(0), mask.size(1), 1)
else:
z = torch.rand([local_outputs.size(0), local_outputs.size(1), self.num_labels]).to(local_outputs)
z_softmax = z.softmax(-1)
for i in range(3): # N = 3
z = z_softmax.argmax(-1)
z = F.one_hot(z, num_classes=3).to(torch.float)
y = self.P_theta(global_output, local_outputs_w, z)
y = y.softmax(-1)
y_emb = get_label_embeddings(y, self.classifier.out_proj.weight)
z = self.Q_phi(local_outputs, y_emb)
z_softmax = z.softmax(-1)
return (loss, (neg_elbo, logic_loss), y, m_attn, (z_softmax, mask)) # batch first
def Q_phi(self, X, y):
'''
X, y => z
:param X: b x m x h
:param y_emb: b x 3 / b x h'
:return: b x m x 3 (ref, nei, sup)
'''
y_expand = y.unsqueeze(1).repeat(1, X.size(1), 1) # b x m x 3/h'
z_hidden = self.linear_Q_phi(torch.cat([y_expand, X], dim=-1)) # b x m x h'
z_hidden = F.tanh(z_hidden)
z = self.z_clf(z_hidden)
return z
def P_theta(self, X_global, X_local, z):
'''
X, z => y*
:param X_global: b x h
:param X_local: b x m x h
:param z: b x m x 3
:param mask: b x m
:return: b x 3, b x m
'''
b = z.size(0)
# global classification
_logits = torch.cat([X_local, X_global, z.reshape(b, -1)], dim=-1)
_logits = self.dropout(_logits)
_logits = self.linear_P_theta(_logits)
_logits = torch.tanh(_logits)
y = self.classifier(_logits)
return y
def self_select(self, h_x):
'''
self attention on a vector
:param h_x: b x L x h
:return: b x h
'''
w = self.dropout(self.linear_self_attn(h_x).squeeze(-1)).softmax(-1)
return torch.einsum('blh,bl->bh', h_x, w)
def local_attn(self, global_output, local_outputs, mask):
'''
:param global_output: b x h
:param qa_outputs: b x m x h
:param mask: b x m
:return: b x h, b x m
'''
m = local_outputs.size(1)
scores = self.linear_m_attn(torch.cat([global_output.unsqueeze(1).repeat(1, m, 1),
local_outputs], dim=-1)).squeeze(-1) # b x m
mask = 1 - mask
scores = scores.masked_fill(mask.to(torch.bool), -1e16)
attn = F.softmax(scores, -1)
return torch.einsum('bm,bmh->bh', attn, local_outputs), attn
|