jiangjiechen's picture
init loren for spaces
7f7285f
raw
history blame
2.66 kB
# -*- coding: utf-8 -*-
'''
@Author : Jiangjie Chen
@Time : 2020/5/11 19:08
@Contact : [email protected]
@Description:
'''
import os
import tagme
def read_title_id(entity_def_path):
id_to_title = {}
with open(entity_def_path, 'r', encoding='UTF-8') as f:
lines = f.readlines()
for i, line in enumerate(lines):
if i > 0:
entity, id = line.strip().split('|')
id_to_title[id] = entity
return id_to_title
class ELClient:
def __init__(self, link_type, min_rho=0.1, prefix=None, verbose=False):
self.verbose = verbose
self.link_type = link_type
if link_type == 'tagme':
self.min_rho = min_rho
tagme.GCUBE_TOKEN = os.environ['TAGME_APIKEY']
elif link_type == 'spacy':
assert prefix is not None
self.init_spacy_linker(prefix)
else:
raise NotImplementedError(link_type)
def init_spacy_linker(self, prefix):
entity_def_path = f"{prefix}/entity_defs.csv"
self._print('* Loading entity linker...')
self.nlp = spacy.load(prefix)
self.id2title = read_title_id(entity_def_path)
self._print('* Entity linker loaded.')
def _tagme_link(self, text):
result = []
for ann in tagme.annotate(text, long_text=1).get_annotations(min_rho=self.min_rho):
result.append((text[ann.begin:ann.end], ann.score, ann.entity_id, ann.entity_title))
# result.append({'begin': ann.begin,
# 'end': ann.end,
# 'id': ann.entity_id,
# 'title': ann.entity_title,
# 'score': ann.score})
result.sort(key=lambda x: x[1], reverse=True)
return result
def link(self, text):
if self.link_type == 'tagme':
return self._tagme_link(text)
else:
return self._spacy_link(text)
def _spacy_link(self, text):
text = self._preprocess_text(text)
doc = self.nlp(text)
ents = [(e.text, e.label_, e.kb_id_, self.id2title.get(e.kb_id_, ''))
for e in doc.ents if e.kb_id_ != 'NIL']
return ents
def _preprocess_text(self, text):
if isinstance(text, list):
text = ' '.join(text)
text = text.strip().replace('-lrb-', '(').replace('-rrb-', ')')
return text
def _print(self, x):
if self.verbose: print(x)
if __name__ == '__main__':
elcl = ELClient(link_type='tagme', verbose=True)
res = elcl.link('Jeff Dean wants to meet Yoshua Bengio.')
print(res)