Spaces:
Build error
Build error
# -*- coding: utf-8 -*- | |
""" | |
@Author : Jiangjie Chen | |
@Time : 2021/12/13 17:17 | |
@Contact : [email protected] | |
@Description: | |
""" | |
import os | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
from prettytable import PrettyTable | |
import pandas as pd | |
import torch | |
config = { | |
"model_type": "roberta", | |
"model_name_or_path": "roberta-large", | |
"logic_lambda": 0.5, | |
"prior": "random", | |
"mask_rate": 0.0, | |
"cand_k": 1, | |
"max_seq1_length": 256, | |
"max_seq2_length": 128, | |
"max_num_questions": 8, | |
"do_lower_case": False, | |
"seed": 42, | |
"n_gpu": torch.cuda.device_count(), | |
} | |
os.system('git clone https://github.com/jiangjiechen/LOREN/') | |
os.system('rm -r LOREN/data/') | |
os.system('rm -r LOREN/results/') | |
os.system('rm -r LOREN/models/') | |
os.system('mv LOREN/* ./') | |
model_dir = snapshot_download('Jiangjie/loren') | |
config['fc_dir'] = os.path.join(model_dir, 'fact_checking/roberta-large/') | |
config['mrc_dir'] = os.path.join(model_dir, 'mrc_seq2seq/bart-base/') | |
config['er_dir'] = os.path.join(model_dir, 'evidence_retrieval/') | |
from src.loren import Loren | |
loren = Loren(config, verbose=False) | |
try: | |
js = loren.check('Donald Trump won the 2020 U.S. presidential election.') | |
except Exception as e: | |
raise ValueError(e) | |
def highlight_phrase(text, phrase): | |
text = loren.fc_client.tokenizer.clean_up_tokenization(text) | |
return text.replace('<mask>', f'<i><b>{phrase}</b></i>') | |
def highlight_entity(text, entity): | |
return text.replace(entity, f'<i><b>{entity}</b></i>') | |
def gradio_formatter(js, output_type): | |
zebra_css = ''' | |
tr:nth-child(even) { | |
background: #f1f1f1; | |
} | |
thead{ | |
background: #f1f1f1; | |
}''' | |
if output_type == 'e': | |
data = {'Evidence': [highlight_entity(x, e) for x, e in zip(js['evidence'], js['entities'])]} | |
elif output_type == 'z': | |
p_sup, p_ref, p_nei = [], [], [] | |
for x in js['phrase_veracity']: | |
max_idx = torch.argmax(torch.tensor(x)).tolist() | |
x = ['%.4f' % xx for xx in x] | |
x[max_idx] = f'<i><b>{x[max_idx]}</b></i>' | |
p_sup.append(x[2]) | |
p_ref.append(x[0]) | |
p_nei.append(x[1]) | |
data = { | |
'Claim Phrase': js['claim_phrases'], | |
'Local Premise': [highlight_phrase(q, x[0]) for q, x in zip(js['cloze_qs'], js['evidential'])], | |
'p_SUP': p_sup, | |
'p_REF': p_ref, | |
'p_NEI': p_nei, | |
} | |
else: | |
raise NotImplementedError | |
data = pd.DataFrame(data) | |
pt = PrettyTable(field_names=list(data.columns), | |
align='l', border=True, hrules=1, vrules=1) | |
for v in data.values: | |
pt.add_row(v) | |
html = pt.get_html_string(attributes={ | |
'style': 'border-width: 2px; bordercolor: black' | |
}, format=True) | |
html = f'<head> <style type="text/css"> {zebra_css} </style> </head>\n' + html | |
html = html.replace('<', '<').replace('>', '>') | |
return html | |
def run(claim): | |
try: | |
js = loren.check(claim) | |
except: | |
js = { | |
'id': 0, | |
'evidence': ['EVIDENCE1', 'EVIDENCE2'], | |
'question': ['QUESTION1', 'QUESTION2'], | |
'claim_phrases': ['CLAIMPHRASE1', 'CLAIMPHRASE2'], | |
'local_premises': [['E1 ' * 100, 'E1 ' * 100, 'E1 ' * 10], ['E2', 'E2', 'E2']], | |
'phrase_veracity': [[0.1, 0.5, 0.4], [0.1, 0.7, 0.2]], | |
'claim_veracity': 'Oops! Something went wrong.' | |
} | |
loren.logger.warning(str(js)) | |
ev_html = gradio_formatter(js, 'e') | |
z_html = gradio_formatter(js, 'z') | |
return js['claim_veracity'], z_html, ev_html | |
iface = gr.Interface( | |
fn=run, | |
inputs="text", | |
outputs=[ | |
'label', | |
'html', | |
'html', | |
], | |
examples=['Donald Trump won the U.S. 2020 presidential election.', | |
'The first inauguration of Bill Clinton was in the United States.', | |
'The Cry of the Owl is based on a book by an American.', | |
'Smriti Mandhana is an Indian woman.'], | |
title="LOREN", | |
layout='vertical', | |
description="LOREN is an interpretable Fact Verification model against Wikipedia. " | |
"This is a demo system for the AAAI 2022 paper: \"LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification\"(https://arxiv.org/abs/2012.13577). " | |
"See the paper for technical details. You can add a *FLAG* on the bottom to record interesting or bad cases! " | |
"(Note that the demo system directly retrieves evidence from an up-to-date Wikipedia, which is different from the evidence used in the paper.)", | |
flagging_dir='results/flagged/', | |
allow_flagging=True, | |
flagging_options=['Interesting!', 'Error: Claim Phrase Parsing', 'Error: Local Premise', | |
'Error: Require Commonsense', 'Error: Evidence Retrieval'], | |
enable_queue=True | |
) | |
iface.launch() | |