jiangjiechen commited on
Commit
3e34cb7
·
1 Parent(s): f06b351

fix premise

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. src/loren.py +1 -1
app.py CHANGED
@@ -56,7 +56,7 @@ def gradio_formatter(js, output_type):
56
  elif output_type == 'z':
57
  data = {
58
  'Claim Phrase': js['claim_phrases'],
59
- 'Local Premise': [x[0] for x in js['local_premises']],
60
  'p_SUP': [round(x[2], 4) for x in js['phrase_veracity']],
61
  'p_REF': [round(x[0], 4) for x in js['phrase_veracity']],
62
  'p_NEI': [round(x[1], 4) for x in js['phrase_veracity']],
@@ -95,7 +95,7 @@ iface = gr.Interface(
95
  'The Cry of the Owl is based on a book by an American.',
96
  'Smriti Mandhana is an Indian woman.'],
97
  title="LOREN",
98
- layout='vertical',
99
  description="LOREN is an interpretable Fact Verification model against Wikipedia. "
100
  "This is a demo system for \"LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification\". "
101
  "See the paper for technical details. You can add FLAG on the bottom to record interesting or bad cases! \n"
 
56
  elif output_type == 'z':
57
  data = {
58
  'Claim Phrase': js['claim_phrases'],
59
+ 'Local Premise': js['local_premises'],
60
  'p_SUP': [round(x[2], 4) for x in js['phrase_veracity']],
61
  'p_REF': [round(x[0], 4) for x in js['phrase_veracity']],
62
  'p_NEI': [round(x[1], 4) for x in js['phrase_veracity']],
 
95
  'The Cry of the Owl is based on a book by an American.',
96
  'Smriti Mandhana is an Indian woman.'],
97
  title="LOREN",
98
+ layout='horizontal',
99
  description="LOREN is an interpretable Fact Verification model against Wikipedia. "
100
  "This is a demo system for \"LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification\". "
101
  "See the paper for technical details. You can add FLAG on the bottom to record interesting or bad cases! \n"
src/loren.py CHANGED
@@ -57,7 +57,7 @@ class Loren:
57
  label = id2label[y_predicted[0]]
58
 
59
  # Update js
60
- js = assemble_answers_to_one(js, k=1)
61
  js['evidence'] = [self.fc_client.tokenizer.clean_up_tokenization(e[2]) for e in js['evidence']]
62
  js['questions'] = [self.fc_client.tokenizer.clean_up_tokenization(q) for q in js['questions']]
63
  js['claim_phrases'] = [self.fc_client.tokenizer.clean_up_tokenization(a[0]) for a in js['answers']]
 
57
  label = id2label[y_predicted[0]]
58
 
59
  # Update js
60
+ js = assemble_answers_to_one(js, k=3)
61
  js['evidence'] = [self.fc_client.tokenizer.clean_up_tokenization(e[2]) for e in js['evidence']]
62
  js['questions'] = [self.fc_client.tokenizer.clean_up_tokenization(q) for q in js['questions']]
63
  js['claim_phrases'] = [self.fc_client.tokenizer.clean_up_tokenization(a[0]) for a in js['answers']]