# -*- coding: utf-8 -*- """ @Author : Bao @Date : 2020/8/12 @Desc : @Last modified by : Bao @Last modified date : 2020/8/12 """ import logging import random import numpy as np import ujson as json import torch from .plm_checkers.checker_utils import soft_logic def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def init_logger(level, filename=None, mode='a', encoding='utf-8'): logging_config = { 'format': '%(asctime)s - %(levelname)s - %(name)s:\t%(message)s', 'datefmt': '%Y-%m-%d %H:%M:%S', 'level': level, 'handlers': [logging.StreamHandler()] } if filename: logging_config['handlers'].append(logging.FileHandler(filename, mode, encoding)) logging.basicConfig(**logging_config) def read_json(filename, mode='r', encoding='utf-8'): with open(filename, mode, encoding=encoding) as fin: return json.load(fin) def save_json(data, filename, mode='w', encoding='utf-8'): with open(filename, mode, encoding=encoding) as fout: json.dump(data, fout, ensure_ascii=False, indent=4) def read_json_lines(filename, mode='r', encoding='utf-8', skip=0): with open(filename, mode, encoding=encoding) as fin: for line in fin: if skip > 0: skip -= 1 continue yield json.loads(line) def save_json_lines(data, filename, mode='w', encoding='utf-8', skip=0): with open(filename, mode, encoding=encoding) as fout: for line in data: if skip > 0: skip -= 1 continue print(json.dumps(line, ensure_ascii=False), file=fout) def read_json_dict(filename, mode='r', encoding='utf-8'): with open(filename, mode, encoding=encoding) as fin: key_2_id = json.load(fin) id_2_key = dict(zip(key_2_id.values(), key_2_id.keys())) return key_2_id, id_2_key def save_json_dict(data, filename, mode='w', encoding='utf-8'): with open(filename, mode, encoding=encoding) as fout: json.dump(data, fout, ensure_ascii=False, indent=4) # Calculate precision, recall and f1 value # According to https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure def get_prf(res): if res['TP'] == 0: if res['FP'] == 0 and res['FN'] == 0: precision = 1.0 recall = 1.0 f1 = 1.0 else: precision = 0.0 recall = 0.0 f1 = 0.0 else: precision = 1.0 * res['TP'] / (res['TP'] + res['FP']) recall = 1.0 * res['TP'] / (res['TP'] + res['FN']) f1 = 2 * precision * recall / (precision + recall) return precision, recall, f1 def compute_metrics(truth, predicted, z_predicted, mask): assert len(truth) == len(predicted) outputs = [] results = {} cnt = 0 z_cnt_h, z_cnt_s = 0, 0 agree_h, agree_s = 0, 0 for x, y, z, m in zip(truth, predicted, z_predicted, mask): res = {'label': x, 'prediction': y} if x == y: cnt += 1 res['pred_z'] = z y_ = soft_logic(torch.tensor([z]), torch.tensor([m]))[0] if y_.argmax(-1).item() == x: z_cnt_s += 1 if y_.argmax(-1).item() == y: agree_s += 1 z_h = torch.tensor(z[:torch.tensor(m).sum()]).argmax(-1).tolist() # m' x 3 if 0 in z_h: # REFUTES y__ = 0 elif 1 in z_h: # NEI y__ = 1 else: # SUPPPORTS y__ = 2 if y__ == x: z_cnt_h += 1 if y__ == y: agree_h += 1 outputs.append(res) results['Accuracy'] = cnt / len(truth) results['z_Acc_hard'] = z_cnt_h / len(truth) results['z_Acc_soft'] = z_cnt_s / len(truth) results['Agreement_hard'] = agree_h / len(truth) results['Agreement_soft'] = agree_s / len(truth) return outputs, results