#!/usr/bin/env python import argparse import itertools import operator import sys from collections import OrderedDict from run_eval import datetime_now, run_generate from seq2seq_utils import ROUGE_KEYS # A table of supported tasks and the list of scores in the order of importance to be sorted by. # To add a new task, simply list the score names that `run_eval.run_generate()` returns task_score_names = { "translation": ["bleu"], "summarization": ROUGE_KEYS, } def parse_search_arg(search): groups = search.split() entries = {k: vs for k, vs in (g.split("=") for g in groups)} entry_names = list(entries.keys()) sets = [list((f"--{k} {v}") for v in vs.split(":")) for k, vs in entries.items()] matrix = [list(x) for x in itertools.product(*sets)] return matrix, entry_names def run_search(): """ Run parametric search over the desired hparam space with help of ``run_eval.py``. All the arguments except ``--search`` are passed to ``run_eval.py`` as is. The values inside of "--search" are parsed, reformatted and fed to ``run_eval.py`` as additional args. The format for the ``--search`` value is a simple string with hparams and colon separated values to try, e.g.: ``` --search "num_beams=5:10 length_penalty=0.8:1.0:1.2 early_stopping=true:false" ``` which will generate ``12`` ``(2*3*2)`` searches for a product of each hparam. For example the example that was just used will invoke ``run_eval.py`` repeatedly with: ``` --num_beams 5 --length_penalty 0.8 --early_stopping true --num_beams 5 --length_penalty 0.8 --early_stopping false [...] --num_beams 10 --length_penalty 1.2 --early_stopping false ``` On completion, this function prints a markdown table of the results sorted by the best BLEU score and the winning arguments. """ prog = sys.argv[0] parser = argparse.ArgumentParser( usage="\n\nImportant: this script accepts all arguments `run_eval.py` accepts and then a few extra, therefore refer to `run_eval.py -h` for the complete list." ) parser.add_argument( "--search", type=str, required=False, help='param space to search, e.g. "num_beams=5:10 length_penalty=0.8:1.0:1.2"', ) parser.add_argument( "--bs", type=int, default=8, required=False, help="initial batch size (may get reduced if it's too big)" ) parser.add_argument("--task", type=str, help="used for task_specific_params + metrics") parser.add_argument( "--info", nargs="?", type=str, const=datetime_now(), help="add custom notes to be printed before the results table. If no value is passed, the current datetime string will be used.", ) args, args_main = parser.parse_known_args() # we share some of the args args_main.extend(["--task", args.task]) args_normal = [prog] + args_main # to support variations like translation_en_to_de" task = "translation" if "translation" in args.task else "summarization" matrix, col_names = parse_search_arg(args.search) col_names[0:0] = task_score_names[task] # score cols first col_widths = {col: len(str(col)) for col in col_names} results = [] for r in matrix: hparams = {k: v for k, v in (x.replace("--", "").split() for x in r)} args_exp = " ".join(r).split() args_exp.extend(["--bs", str(args.bs)]) # in case we need to reduce its size due to CUDA OOM sys.argv = args_normal + args_exp # XXX: need to trap CUDA OOM and lower args.bs if that happens and retry scores = run_generate(verbose=False) # make sure scores are first in the table result = OrderedDict() for score in task_score_names[task]: result[score] = scores[score] result.update(hparams) results.append(result) # find widest entries for k, v in result.items(): l = len(str(v)) if l > col_widths[k]: col_widths[k] = l results_sorted = sorted(results, key=operator.itemgetter(*task_score_names[task]), reverse=True) print(" | ".join([f"{col:{col_widths[col]}}" for col in col_names])) print(" | ".join([f"{'-'*col_widths[col]}" for col in col_names])) for row in results_sorted: print(" | ".join([f"{row[col]:{col_widths[col]}}" for col in col_names])) best = results_sorted[0] for score in task_score_names[task]: del best[score] best_args = [f"--{k} {v}" for k, v in best.items()] dyn_args = ["--bs", str(args.bs)] if args.info: print(f"\nInfo: {args.info}") print("\nBest score args:") print(" ".join(args_main + best_args + dyn_args)) return results_sorted if __name__ == "__main__": # Usage: # [normal-run_eval_search.py cmd plus] \ # --search="num_beams=1:5:10 length_penalty=0.8:1:1.2 early_stopping=true:false" # # Example: # PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py $MODEL_NAME \ # $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target \ # --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation \ # --search="num_beams=1:5:10 length_penalty=0.8:1:1.2 early_stopping=true:false" run_search()