#!/usr/bin/env bash MODEL_TYPE=roberta MODEL_NAME_OR_PATH=roberta-large VERSION=v5 MAX_NUM_QUESTIONS=8 MAX_SEQ1_LENGTH=256 MAX_SEQ2_LENGTH=128 CAND_K=3 LAMBDA=${1:-0.5} PRIOR=${2:-nli} MASK=${3:-0.0} echo "lambda = $LAMBDA, prior = $PRIOR, mask = $MASK" DATA_DIR=$PJ_HOME/data/fact_checking/${VERSION} OUTPUT_DIR=$PJ_HOME/models/fact_checking/${VERSION}_${MODEL_NAME_OR_PATH}/${VERSION}_${MODEL_NAME_OR_PATH}_AAAI_K${CAND_K}_${PRIOR}_m${MASK}_l${LAMBDA} NUM_TRAIN_EPOCH=7 GRADIENT_ACCUMULATION_STEPS=2 PER_GPU_TRAIN_BATCH_SIZE=8 # 4546 PER_GPU_EVAL_BATCH_SIZE=16 LOGGING_STEPS=200 SAVE_STEPS=200 python3 train.py \ --data_dir ${DATA_DIR} \ --output_dir ${OUTPUT_DIR} \ --model_type ${MODEL_TYPE} \ --model_name_or_path ${MODEL_NAME_OR_PATH} \ --max_seq1_length ${MAX_SEQ1_LENGTH} \ --max_seq2_length ${MAX_SEQ2_LENGTH} \ --max_num_questions ${MAX_NUM_QUESTIONS} \ --do_train \ --do_eval \ --evaluate_during_training \ --learning_rate 1e-5 \ --num_train_epochs ${NUM_TRAIN_EPOCH} \ --gradient_accumulation_steps ${GRADIENT_ACCUMULATION_STEPS} \ --per_gpu_train_batch_size ${PER_GPU_TRAIN_BATCH_SIZE} \ --per_gpu_eval_batch_size ${PER_GPU_EVAL_BATCH_SIZE} \ --logging_steps ${LOGGING_STEPS} \ --save_steps ${SAVE_STEPS} \ --cand_k ${CAND_K} \ --logic_lambda ${LAMBDA} \ --prior ${PRIOR} \ --overwrite_output_dir \ --temperature 1.0 \ --mask_rate ${MASK} python3 cjjpy.py --lark "$OUTPUT_DIR fact checking training completed"