File size: 6,327 Bytes
5999527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6456d38
 
a6b222a
6456d38
5999527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6456d38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5999527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d859539
 
5999527
 
 
 
 
 
 
 
 
 
 
 
6456d38
 
 
 
 
 
 
 
626f040
 
6456d38
 
 
 
5999527
6456d38
 
 
 
 
 
b2d3b4e
 
 
6456d38
 
 
 
 
626f040
6456d38
5999527
 
6456d38
 
 
626f040
6456d38
a6b222a
6456d38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626f040
5999527
6456d38
 
 
5999527
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import re
import string
from tqdm import tqdm
from collections import Counter

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"

def remove_(text: str)-> str:
    ''' ๋ถˆํ•„์š”ํ•œ ๊ธฐํ˜ธ ์ œ๊ฑฐ '''
    text = re.sub("'", " ", text)
    text = re.sub('"', " ", text)
    text = re.sub('ใ€Š', " ", text)
    text = re.sub('ใ€‹', " ", text)
    text = re.sub('<', " ", text)
    text = re.sub('>', " ", text)
    text = re.sub('ใ€ˆ', " ", text)
    text = re.sub('ใ€‰', " ", text)
    text = re.sub("\(", " ", text)
    text = re.sub("\)", " ", text)
    text = re.sub("โ€˜", " ", text)
    text = re.sub("โ€™", " ", text)
    return text

def white_space_fix(text: str)-> str:
    '''์—ฐ์†๋œ ๊ณต๋ฐฑ์ผ ๊ฒฝ์šฐ ํ•˜๋‚˜์˜ ๊ณต๋ฐฑ์œผ๋กœ ๋Œ€์ฒด'''
    return ' '.join(text.split())

def remove_punc(text: str)-> str:
    '''๊ตฌ๋‘์  ์ œ๊ฑฐ'''
    exclude = set(string.punctuation)
    return ''.join(ch for ch in text if ch not in exclude)

def lower(text: str)-> str:
    '''์†Œ๋ฌธ์ž ์ „ํ™˜'''
    return text.lower()

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ecqa(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('string'),
                'references': datasets.Value('string'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass
    
    def __normalize(self, text: str):
        text = remove_(text)
        text = lower(text)
        text = remove_punc(text)
        return white_space_fix(text)

    def __compute_f1(self, prediction: str, reference: str)-> tuple[float, float, float]:
        predicted_tokens = self.__normalize(prediction).split()
        referenced_tokens = self.__normalize(reference).split()

        predictied_chars = []
        for token in predicted_tokens:
            predictied_chars += [char for char in token]

        referenced_chars = []
        for token in referenced_tokens:
            referenced_chars += [char for char in token]

        true_positive = Counter(predictied_chars) & Counter(referenced_chars)
        n_true_positive = sum(true_positive.values())
        if n_true_positive == 0:
            return 0, 0, 0

        precision = 1.0 * n_true_positive / len(predictied_chars)
        recall = 1.0 * n_true_positive / len(referenced_chars)
        f1 = (2 * precision * recall) / (precision + recall)

        return f1, recall, precision
    
    def _compute(self, predictions: list[str], references: list[str]):
        """Returns the scores"""
        # TODO: Compute the different scores of the module
        assert isinstance(predictions, list)
        assert isinstance(references, list)
        assert len(predictions) == len(references)

        f1_acc = precision_acc = recall_acc = total = 0
        for prediction, reference in tqdm(zip(predictions, references)):
            total += 1
            f1_computed, precision_computed, recall_computed = self.__compute_f1(prediction, reference)

            f1_acc += f1_computed
            precision_acc += precision_computed
            recall_acc += recall_computed

        f1, precision, recall = [
            # average
            100.0 * computed / total

            for computed in [
                f1_acc,
                precision_acc,
                recall_acc
            ]
        ]

        return {
            "f1": f1,
            "precision": precision,
            "recall": recall
        }