ecqa / ecqa.py
jijihuny's picture
add tqdm
a6b222a
raw
history blame
6.27 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import re
import string
from tqdm import tqdm
from collections import Counter
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
def remove_(text: str)-> str:
''' λΆˆν•„μš”ν•œ 기호 제거 '''
text = re.sub("'", " ", text)
text = re.sub('"', " ", text)
text = re.sub('γ€Š', " ", text)
text = re.sub('》', " ", text)
text = re.sub('<', " ", text)
text = re.sub('>', " ", text)
text = re.sub('γ€ˆ', " ", text)
text = re.sub('〉', " ", text)
text = re.sub("\(", " ", text)
text = re.sub("\)", " ", text)
text = re.sub("β€˜", " ", text)
text = re.sub("’", " ", text)
return text
def white_space_fix(text: str)-> str:
'''μ—°μ†λœ 곡백일 경우 ν•˜λ‚˜μ˜ 곡백으둜 λŒ€μ²΄'''
return ' '.join(text.split())
def remove_punc(text: str)-> str:
'''ꡬ두점 제거'''
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text: str)-> str:
'''μ†Œλ¬Έμž μ „ν™˜'''
return text.lower()
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ecqa(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string'),
'references': datasets.Value('string'),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def __normalize(self, text: str):
text = remove_(text)
text = lower(text)
text = remove_punc(text)
return white_space_fix(text)
def __compute_f1(self, prediction: str, reference: str)-> tuple[float, float, float]:
predicted_tokens = self.__normalize(prediction).split()
referenced_tokens = self.__normalize(reference).split()
predictied_chars = []
for token in predicted_tokens:
predictied_chars += [char for char in token]
referenced_chars = []
for token in referenced_tokens:
referenced_chars += [char for char in token]
true_positive = Counter(predictied_chars) & Counter(referenced_chars)
n_true_positive = sum(true_positive.values())
precision = 1.0 * n_true_positive / len(predictied_chars)
recall = 1.0 * n_true_positive / len(referenced_chars)
f1 = (2 * precision * recall) / (precision + recall)
return f1, recall, precision
def _compute(self, predictions: list[str], references: list[str]):
"""Returns the scores"""
# TODO: Compute the different scores of the module
assert isinstance(predictions, list)
assert isinstance(references, list)
assert len(predictions) == len(references)
f1_acc = precision_acc = recall_acc = total = 0
for prediction, reference in tqdm(zip(predictions, references)):
total += 1
f1_computed, precision_computed, recall_computed = self.__compute_f1(prediction, reference)
f1_acc += f1_computed
precision_acc += precision_computed
recall_acc += recall_computed
f1, precision, recall = [
# average
100.0 * computed / total
for computed in [
f1_acc,
precision_acc,
recall_acc
]
]
return {
"f1": f1,
"precision": precision,
"recall": recall
}