# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import evaluate import datasets import re import string from tqdm import tqdm from collections import Counter # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is designed to solve this great ML task and is crafted with a lot of care. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: accuracy: description of the first score, another_score: description of the second score, Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> my_new_module = evaluate.load("my_new_module") >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'accuracy': 1.0} """ # TODO: Define external resources urls if needed BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" def remove_(text: str)-> str: ''' 불필요한 기호 제거 ''' text = re.sub("'", " ", text) text = re.sub('"', " ", text) text = re.sub('《', " ", text) text = re.sub('》', " ", text) text = re.sub('<', " ", text) text = re.sub('>', " ", text) text = re.sub('〈', " ", text) text = re.sub('〉', " ", text) text = re.sub("\(", " ", text) text = re.sub("\)", " ", text) text = re.sub("‘", " ", text) text = re.sub("’", " ", text) return text def white_space_fix(text: str)-> str: '''연속된 공백일 경우 하나의 공백으로 대체''' return ' '.join(text.split()) def remove_punc(text: str)-> str: '''구두점 제거''' exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text: str)-> str: '''소문자 전환''' return text.lower() @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class ecqa(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Value('string'), 'references': datasets.Value('string'), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed pass def __normalize(self, text: str): text = remove_(text) text = lower(text) text = remove_punc(text) return white_space_fix(text) def __compute_f1(self, prediction: str, reference: str)-> tuple[float, float, float]: predicted_tokens = self.__normalize(prediction).split() referenced_tokens = self.__normalize(reference).split() predictied_chars = [] for token in predicted_tokens: predictied_chars += [char for char in token] referenced_chars = [] for token in referenced_tokens: referenced_chars += [char for char in token] true_positive = Counter(predictied_chars) & Counter(referenced_chars) n_true_positive = sum(true_positive.values()) if n_true_positive == 0: return 0, 0, 0 precision = 1.0 * n_true_positive / len(predictied_chars) recall = 1.0 * n_true_positive / len(referenced_chars) f1 = (2 * precision * recall) / (precision + recall) return f1, recall, precision def _compute(self, predictions: list[str], references: list[str]): """Returns the scores""" # TODO: Compute the different scores of the module assert isinstance(predictions, list) assert isinstance(references, list) assert len(predictions) == len(references) f1_acc = precision_acc = recall_acc = total = 0 for prediction, reference in tqdm(zip(predictions, references)): total += 1 f1_computed, precision_computed, recall_computed = self.__compute_f1(prediction, reference) f1_acc += f1_computed precision_acc += precision_computed recall_acc += recall_computed f1, precision, recall = [ # average 100.0 * computed / total for computed in [ f1_acc, precision_acc, recall_acc ] ] return { "f1": f1, "precision": precision, "recall": recall }