Spaces:
Runtime error
Runtime error
File size: 4,736 Bytes
1bc3ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
LlamaTokenizer,
)
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 50
MAX_INPUT_TOKEN_LENGTH = 512
DESCRIPTION = """\
# OpenELM-270M-Instruct -- Running on CPU
This Space demonstrates [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple. Please, check the original model card for details.
For additional detail on the model, including a link to the arXiv paper, refer to the [Hugging Face Paper page for OpenELM](https://huggingface.co/papers/2404.14619) .
For details on pre-training, instruction tuning, and parameter-efficient finetuning for the model refer to the [OpenELM page in the CoreNet GitHub repository](https://github.com/apple/corenet/tree/main/projects/openelm) .
"""
LICENSE = """
<p/>
---
As a derivative work of [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple,
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-270M-Instruct/blob/main/LICENSE)
Based on the [Norod78/OpenELM_3B_Demo](https://huggingface.co/spaces/Norod78/OpenELM_3B_Demo) space.
"""
model = AutoModelForCausalLM.from_pretrained(
"apple/OpenELM-270M-Instruct",
revision="eb111ff",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-2-7b-hf",
revision="01c7f73",
trust_remote_code=True,
tokenizer_class=LlamaTokenizer,
)
if tokenizer.pad_token == None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.eos_token_id
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.1,
top_p: float = 0.5,
top_k: int = 3,
repetition_penalty: float = 1.4,
) -> Iterator[str]:
historical_text = ""
#Prepend the entire chat history to the message with new lines between each message
for user, assistant in chat_history:
historical_text += f"\n{user}\n{assistant}"
if len(historical_text) > 0:
message = historical_text + f"\n{message}"
input_ids = tokenizer([message], return_tensors="pt").input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id = tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.0,
maximum=4.0,
step=0.1,
value=0.1,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.5,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=3,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.4,
),
],
stop_btn="Stop",
cache_examples=False,
examples=[
["You are three years old. Count from one to ten."],
["Explain quantum physics in 5 words or less:"],
["Question: What do you call a bear with no teeth?\nAnswer:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|