Spaces:
Runtime error
Runtime error
File size: 6,121 Bytes
c1811af 9831428 41cb046 a381bc0 80e614a 77e7345 9831428 064fc00 77e7345 9831428 064fc00 d4e5967 3d68848 77e7345 9522bb7 9831428 77e7345 9831428 9522bb7 77e7345 d4e5967 9522bb7 41cb046 77e7345 9831428 d4e5967 a381bc0 d4e5967 77e7345 a381bc0 d4e5967 80e614a 77e7345 80e614a 77e7345 80e614a 77e7345 80e614a 22eefa0 80e614a 77e7345 80e614a 22eefa0 80e614a 77e7345 4970856 41cb046 77e7345 d4e5967 41cb046 77e7345 41cb046 d4e5967 41cb046 77e7345 41cb046 288a5de 77eba15 77e7345 41cb046 288a5de 77e7345 288a5de 77e7345 288a5de 77e7345 288a5de 41cb046 77e7345 41cb046 288a5de 77e7345 288a5de 77e7345 41cb046 77e7345 288a5de 77e7345 288a5de d4e5967 41cb046 77eba15 9522bb7 4071dd4 77e7345 4970856 77e7345 41cb046 77e7345 e537f35 4071dd4 77e7345 c1811af 4970856 77e7345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import gradio as gr
import numpy as np
import wikipediaapi as wk
import wikipedia
import openai
from transformers import (
TokenClassificationPipeline,
AutoModelForTokenClassification,
AutoTokenizer,
BertForQuestionAnswering,
BertTokenizer,
)
from transformers.pipelines import AggregationStrategy
import torch
from dotenv import load_dotenv
# =====[ DEFINE PIPELINE ]===== #
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
def __init__(self, model, *args, **kwargs):
super().__init__(
model=AutoModelForTokenClassification.from_pretrained(model),
tokenizer=AutoTokenizer.from_pretrained(model),
*args,
**kwargs,
)
def postprocess(self, model_outputs):
results = super().postprocess(
model_outputs=model_outputs,
aggregation_strategy=AggregationStrategy.SIMPLE,
)
return np.unique([result.get("word").strip() for result in results])
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
# =====[ LOAD PIPELINE ]===== #
keyPhraseExtractionModel = "ml6team/keyphrase-extraction-kbir-inspec"
extractor = KeyphraseExtractionPipeline(model=keyPhraseExtractionModel)
model = BertForQuestionAnswering.from_pretrained(
"bert-large-uncased-whole-word-masking-finetuned-squad"
)
tokenizer = BertTokenizer.from_pretrained(
"bert-large-uncased-whole-word-masking-finetuned-squad"
)
def wikipedia_search(input: str) -> str:
"""Perform a Wikipedia search using keyphrases.
Args:
input (str): The input text.
Returns:
str: The summary of the Wikipedia page.
"""
input = input.replace("\n", " ")
keyphrases = extractor(input)
wiki = wk.Wikipedia("en")
try:
if len(keyphrases) == 0:
return "Can you add more details to your question?"
query_suggestion = wikipedia.suggest(keyphrases[0])
if query_suggestion != None:
results = wikipedia.search(query_suggestion)
else:
results = wikipedia.search(keyphrases[0])
index = 0
page = wiki.page(results[index])
while not ("." in page.summary) or not page.exists():
index += 1
if index == len(results):
raise Exception
page = wiki.page(results[index])
return page.summary
except:
return "I cannot answer this question"
def answer_question(question: str) -> str:
"""Answer the question using the context from the Wikipedia search.
Args:
question (str): The input question.
Returns:
str: The answer to the question.
"""
context = wikipedia_search(question)
if (context == "I cannot answer this question") or (
context == "Can you add more details to your question?"
):
return context
# Tokenize and split input
input_ids = tokenizer.encode(question, context)
question_ids = input_ids[: input_ids.index(tokenizer.sep_token_id) + 1]
# Report how long the input sequence is. if longer than 512 tokens divide it multiple sequences
length_of_group = 512 - len(question_ids)
input_ids_without_question = input_ids[
input_ids.index(tokenizer.sep_token_id) + 1 :
]
print(
f"Query has {len(input_ids)} tokens, divided in {len(input_ids_without_question)//length_of_group + 1}.\n"
)
input_ids_split = []
for group in range(len(input_ids_without_question) // length_of_group + 1):
input_ids_split.append(
question_ids
+ input_ids_without_question[
length_of_group * group : length_of_group * (group + 1) - 1
]
)
input_ids_split.append(
question_ids
+ input_ids_without_question[
length_of_group
* (len(input_ids_without_question) // length_of_group + 1) : len(
input_ids_without_question
)
- 1
]
)
scores = []
for input in input_ids_split:
# set Segment IDs
# Search the input_ids for the first instance of the `[SEP]` token.
sep_index = input.index(tokenizer.sep_token_id)
num_seg_a = sep_index + 1
segment_ids = [0] * num_seg_a + [1] * (len(input) - num_seg_a)
assert len(segment_ids) == len(input)
# evaulate the model
outputs = model(
torch.tensor([input]), # The tokens representing our input text.
token_type_ids=torch.tensor(
[segment_ids]
), # The segment IDs to differentiate question from answer_text
return_dict=True,
)
start_scores = outputs.start_logits
end_scores = outputs.end_logits
max_start_score = torch.max(start_scores)
max_end_score = torch.max(end_scores)
print(max_start_score)
print(max_end_score)
# reconstruct answer from the tokens
tokens = tokenizer.convert_ids_to_tokens(input_ids)
answer = tokens[torch.argmax(start_scores)]
for i in range(torch.argmax(start_scores) + 1, torch.argmax(end_scores) + 1):
if tokens[i][0:2] == "##":
answer += tokens[i][2:]
else:
answer += " " + tokens[i]
scores.append((max_start_score, max_end_score, answer))
# Compare scores for answers found and each paragraph and pick the most relevant.
answer = max(scores, key=lambda x: x[0] + x[1])[2]
response = openai.Completion.create(
model="text-davinci-003",
prompt="Answer the question " + question + "using this answer: " + answer,
max_tokens=3000,
)
return response.choices[0].text.replace("\n\n", " ")
# =====[ DEFINE INTERFACE ]===== #'
title = "Azza Knowledge Agent"
examples = [["Where is the Eiffel Tower?"], ["What is the population of France?"]]
demo = gr.Interface(
title=title,
fn=answer_question,
inputs="text",
outputs="text",
examples=examples,
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch()
|