jinhybr commited on
Commit
0ed5d15
Β·
1 Parent(s): 7f22983

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -124,7 +124,7 @@ def process_image(image):
124
  return image
125
 
126
 
127
- title = "OCR Document Paper - Invoice - LayoutLMv3"
128
  description = "Fine-tuned Microsoft's LayoutLMv3 on WildReceipt Dataset to parse Invoice OCR document. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
129
 
130
  article="<b>References</b><br>[1] Y. Xu et al., β€œLayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a><br>[3] Hongbin Sun, Zhanghui Kuang, Xiaoyu Yue, Chenhao Lin, and Wayne Zhang. 2021. Spatial Dual-Modality Graph Reasoning for Key Information Extraction. arXiv. DOI:https://doi.org/10.48550/ARXIV.2103.14470 <a href='https://doi.org/10.48550/ARXIV.2103.14470'>Paper Link</a>"
@@ -143,4 +143,4 @@ iface = gr.Interface(fn=process_image,
143
  css=css,
144
  analytics_enabled = True, enable_queue=True)
145
 
146
- iface.launch(inline=False, share=True, debug=True)
 
124
  return image
125
 
126
 
127
+ title = "OCR Invoice - Information Extraction - LayoutLMv3"
128
  description = "Fine-tuned Microsoft's LayoutLMv3 on WildReceipt Dataset to parse Invoice OCR document. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
129
 
130
  article="<b>References</b><br>[1] Y. Xu et al., β€œLayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a><br>[3] Hongbin Sun, Zhanghui Kuang, Xiaoyu Yue, Chenhao Lin, and Wayne Zhang. 2021. Spatial Dual-Modality Graph Reasoning for Key Information Extraction. arXiv. DOI:https://doi.org/10.48550/ARXIV.2103.14470 <a href='https://doi.org/10.48550/ARXIV.2103.14470'>Paper Link</a>"
 
143
  css=css,
144
  analytics_enabled = True, enable_queue=True)
145
 
146
+ iface.launch(inline=False, share=False, debug=True)