Update app.py
Browse files
app.py
CHANGED
@@ -15,9 +15,9 @@ st.subheader('',divider='rainbow')
|
|
15 |
url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
|
16 |
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
|
17 |
col1, col2 = st.columns(2)
|
18 |
-
st.subheader("
|
19 |
with col1:
|
20 |
-
|
21 |
text_search = st.text_input(label="_", value="",label_visibility="hidden" )
|
22 |
m1 = df1["Donor_Name"].str.contains(text_search)
|
23 |
m2 = df1["reference"].str.contains(text_search)
|
@@ -36,6 +36,7 @@ st.download_button(
|
|
36 |
"β¬οΈ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
|
37 |
)
|
38 |
#st.subheader("π :red[***Select the type of active layer...***]")
|
|
|
39 |
col3, col4 = st.columns(2)
|
40 |
with col3:
|
41 |
|
@@ -48,7 +49,7 @@ with col4:
|
|
48 |
option ="example"
|
49 |
molecule = 'O=C(C(C=C(F)C(F)=C1)=C1C/2=C(C#N)/C#N)C2=C/C3=C(CCCCCCCCCCC)C(S4)=C(S3)C5=C4C6=C(N5CC(CC)CCCC)C7=C(C(SC8=C9SC(/C=C%10C(C(C=C(F)C(F)=C%11)=C%11C\%10=C(C#N)C#N)=O)=C8CCCCCCCCCCC)=C9N7CC(CC)CCCC)C%12=NSN=C6%12'
|
50 |
do = 'CCCCC(CC)CC1=C(F)C=C(C2=C3C=C(C4=CC=C(C5=C6C(=O)C7=C(CC(CC)CCCC)SC(CC(CC)CCCC)=C7C(=O)C6=C(C6=CC=C(C)S6)S5)S4)SC3=C(C3=CC(F)=C(CC(CC)CCCC)S3)C3=C2SC(C)=C3)S1'
|
51 |
-
|
52 |
if option =="πAcceptor":
|
53 |
st.subheader("π¨βπ¬**Input the SMILES of Acceptor Molecule**")
|
54 |
molecule = st.text_input("π¨βπ¬**Input the SMILES of Acceptor Molecule**", label_visibility="hidden" )
|
@@ -79,6 +80,7 @@ try:
|
|
79 |
except:
|
80 |
st.subheader(f"β‘**PCE**: None ")
|
81 |
st.subheader(":black[**𧑠High-throughput screening for high-performance D/A pairs**]")
|
|
|
82 |
col5, col6 = st.columns(2)
|
83 |
with col5:
|
84 |
uploaded_files = st.file_uploader("Choose a CSV file")
|
|
|
15 |
url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
|
16 |
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
|
17 |
col1, col2 = st.columns(2)
|
18 |
+
st.subheader("π**The donor and acceptor database**")
|
19 |
with col1:
|
20 |
+
st.caption("π**Search papers or molecules**")
|
21 |
text_search = st.text_input(label="_", value="",label_visibility="hidden" )
|
22 |
m1 = df1["Donor_Name"].str.contains(text_search)
|
23 |
m2 = df1["reference"].str.contains(text_search)
|
|
|
36 |
"β¬οΈ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
|
37 |
)
|
38 |
#st.subheader("π :red[***Select the type of active layer...***]")
|
39 |
+
st.subheader("π**Molecular editor**")
|
40 |
col3, col4 = st.columns(2)
|
41 |
with col3:
|
42 |
|
|
|
49 |
option ="example"
|
50 |
molecule = 'O=C(C(C=C(F)C(F)=C1)=C1C/2=C(C#N)/C#N)C2=C/C3=C(CCCCCCCCCCC)C(S4)=C(S3)C5=C4C6=C(N5CC(CC)CCCC)C7=C(C(SC8=C9SC(/C=C%10C(C(C=C(F)C(F)=C%11)=C%11C\%10=C(C#N)C#N)=O)=C8CCCCCCCCCCC)=C9N7CC(CC)CCCC)C%12=NSN=C6%12'
|
51 |
do = 'CCCCC(CC)CC1=C(F)C=C(C2=C3C=C(C4=CC=C(C5=C6C(=O)C7=C(CC(CC)CCCC)SC(CC(CC)CCCC)=C7C(=O)C6=C(C6=CC=C(C)S6)S5)S4)SC3=C(C3=CC(F)=C(CC(CC)CCCC)S3)C3=C2SC(C)=C3)S1'
|
52 |
+
st.subheader("π**PCE prediction**")
|
53 |
if option =="πAcceptor":
|
54 |
st.subheader("π¨βπ¬**Input the SMILES of Acceptor Molecule**")
|
55 |
molecule = st.text_input("π¨βπ¬**Input the SMILES of Acceptor Molecule**", label_visibility="hidden" )
|
|
|
80 |
except:
|
81 |
st.subheader(f"β‘**PCE**: None ")
|
82 |
st.subheader(":black[**𧑠High-throughput screening for high-performance D/A pairs**]")
|
83 |
+
|
84 |
col5, col6 = st.columns(2)
|
85 |
with col5:
|
86 |
uploaded_files = st.file_uploader("Choose a CSV file")
|