Upload 4 files
Browse files
app.py
CHANGED
@@ -4,25 +4,27 @@ import rdkit
|
|
4 |
import streamlit_ketcher
|
5 |
from streamlit_ketcher import st_ketcher
|
6 |
import run
|
|
|
7 |
|
8 |
# Page setup
|
9 |
st.set_page_config(page_title="DeepDAP", page_icon="๐", layout="wide")
|
10 |
st.title("๐DeepDAP")
|
11 |
-
|
12 |
# Connect to the Google Sheet
|
13 |
|
14 |
url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
|
15 |
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
|
16 |
col1, col2 = st.columns(2)
|
17 |
with col1:
|
18 |
-
|
|
|
19 |
m1 = df1["Donor_Name"].str.contains(text_search)
|
20 |
m2 = df1["reference"].str.contains(text_search)
|
21 |
m3 = df1["Acceptor_Name"].str.contains(text_search)
|
22 |
df_search = df1[m1 | m2|m3]
|
23 |
with col2:
|
24 |
-
st.link_button("
|
25 |
-
st.caption('
|
26 |
if text_search:
|
27 |
st.write(df_search)
|
28 |
st.download_button( "โฌ๏ธDownload edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
|
@@ -31,24 +33,40 @@ edited_df = st.data_editor(df1, num_rows="dynamic")
|
|
31 |
st.download_button(
|
32 |
"โฌ๏ธ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
|
33 |
)
|
34 |
-
|
35 |
-
option = st.
|
36 |
-
|
37 |
-
|
38 |
)
|
39 |
-
if option ==
|
40 |
-
|
41 |
-
molecule = st.text_input("
|
42 |
acceptor= st_ketcher(molecule )
|
43 |
-
st.
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
donor = st_ketcher(do)
|
48 |
-
st.
|
49 |
-
|
|
|
50 |
try:
|
51 |
pce = run.smiles_aas_test( str(acceptor ), str(donor) )
|
52 |
-
st.
|
53 |
except:
|
54 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import streamlit_ketcher
|
5 |
from streamlit_ketcher import st_ketcher
|
6 |
import run
|
7 |
+
import screen
|
8 |
|
9 |
# Page setup
|
10 |
st.set_page_config(page_title="DeepDAP", page_icon="๐", layout="wide")
|
11 |
st.title("๐DeepDAP")
|
12 |
+
st.subheader('',divider='rainbow')
|
13 |
# Connect to the Google Sheet
|
14 |
|
15 |
url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
|
16 |
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
|
17 |
col1, col2 = st.columns(2)
|
18 |
with col1:
|
19 |
+
st.header("๐**Search papers or molecules**")
|
20 |
+
text_search = st.text_input(label="_", value="",label_visibility="hidden" )
|
21 |
m1 = df1["Donor_Name"].str.contains(text_search)
|
22 |
m2 = df1["reference"].str.contains(text_search)
|
23 |
m3 = df1["Acceptor_Name"].str.contains(text_search)
|
24 |
df_search = df1[m1 | m2|m3]
|
25 |
with col2:
|
26 |
+
st.link_button(":black[๐**DATABASE**]", r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0")
|
27 |
+
st.caption(':black[๐If you want to update the origin database, click the button.]')
|
28 |
if text_search:
|
29 |
st.write(df_search)
|
30 |
st.download_button( "โฌ๏ธDownload edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
|
|
|
33 |
st.download_button(
|
34 |
"โฌ๏ธ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
|
35 |
)
|
36 |
+
st.subheader("๐ :red[***Select the type of active layer...***]")
|
37 |
+
option = st.radio(
|
38 |
+
"๐ :red[**Select the type of active layer...**]",
|
39 |
+
[":black[**Donor**]", ":black[**Acceptor**]"], label_visibility="hidden"
|
40 |
)
|
41 |
+
if option ==":black[**Acceptor**]":
|
42 |
+
st.subheader("๐จโ๐ฌ**Input the SMILES of Acceptor Molecule**")
|
43 |
+
molecule = st.text_input("๐จโ๐ฌ**Input the SMILES of Acceptor Molecule**", label_visibility="hidden" )
|
44 |
acceptor= st_ketcher(molecule )
|
45 |
+
st.subheader(f"๐**New SMILES of edited acceptor molecules**: {acceptor}")
|
46 |
+
st.subheader(":black[**๐งกInput the SMILES of Donor Molecule**]")
|
47 |
+
donor= st.text_input(":black[**๐งกInput the SMILES of Donor Molecule**]", label_visibility="hidden")
|
48 |
+
if option ==":black[**Donor**]":
|
49 |
+
st.subheader("๐จโ๐ฌ**Input the SMILES of Donor Molecule**" )
|
50 |
+
do= st.text_input("๐จโ๐ฌ**Input the SMILES of Donor Molecule**" , label_visibility="hidden")
|
51 |
donor = st_ketcher(do)
|
52 |
+
st.subheader(f"๐**New SMILES of edited donor molecules**: {donor}")
|
53 |
+
st.subheader(":black[**๐งกInput the SMILES of Acceptor Molecule**]")
|
54 |
+
acceptor = st.text_input(":black[**๐งกInput the SMILES of Acceptor Molecule**]", label_visibility="hidden")
|
55 |
try:
|
56 |
pce = run.smiles_aas_test( str(acceptor ), str(donor) )
|
57 |
+
st.subheader(f"โก**PCE**: ``{pce}``")
|
58 |
except:
|
59 |
+
st.subheader(f"โก**PCE**: None ")
|
60 |
+
st.subheader(":black[**๐งกBatch screening for high-performance D/A pairs**]")
|
61 |
+
uploaded_files = st.file_uploader("Choose a CSV file")
|
62 |
+
st.write( "๐upload a csv file containing ['donor' ] and ['acceptor']")
|
63 |
+
if st.button("๐PREDICT"):
|
64 |
+
if uploaded_files is not None:
|
65 |
+
text = st.markdown(":red[Predictions are being made... Please wait...]")
|
66 |
+
st.progress(100, text=None)
|
67 |
+
x = screen.smiles_aas_test(uploaded_files )
|
68 |
+
x = pd.DataFrame(x)
|
69 |
+
|
70 |
+
st.download_button( "โฌ๏ธDownload the predicted files as .csv", x.to_csv(), "predict results.csv", use_container_width=True)
|
71 |
+
else:
|
72 |
+
st.markdown(":red[Please upload the file first!]")
|
run.py
CHANGED
@@ -4,8 +4,6 @@ import pandas as pd
|
|
4 |
import torch
|
5 |
from torch.nn import functional as F
|
6 |
from transformers import AutoTokenizer
|
7 |
-
import sys
|
8 |
-
sys.path.insert(0, "jinysun/DeepDAP")
|
9 |
|
10 |
from util.utils import *
|
11 |
|
@@ -97,8 +95,7 @@ def smiles_aas_test(smile_acc,smile_don):
|
|
97 |
return {'Error_message': e}
|
98 |
|
99 |
|
100 |
-
|
101 |
-
a = smiles_aas_test(smile_acc,smile_don)
|
102 |
|
103 |
|
104 |
|
|
|
4 |
import torch
|
5 |
from torch.nn import functional as F
|
6 |
from transformers import AutoTokenizer
|
|
|
|
|
7 |
|
8 |
from util.utils import *
|
9 |
|
|
|
95 |
return {'Error_message': e}
|
96 |
|
97 |
|
98 |
+
|
|
|
99 |
|
100 |
|
101 |
|
screen.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
from util.utils import *
|
9 |
+
|
10 |
+
from tqdm import tqdm
|
11 |
+
from train import markerModel
|
12 |
+
|
13 |
+
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
14 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = '0 '
|
15 |
+
|
16 |
+
device_count = torch.cuda.device_count()
|
17 |
+
device_biomarker = torch.device('cuda' if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
device = torch.device('cpu')
|
20 |
+
a_model_name = 'DeepChem/ChemBERTa-10M-MLM'
|
21 |
+
d_model_name = 'DeepChem/ChemBERTa-10M-MTR'
|
22 |
+
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(a_model_name)
|
24 |
+
d_tokenizer = AutoTokenizer.from_pretrained(d_model_name)
|
25 |
+
|
26 |
+
#--biomarker Model
|
27 |
+
##-- hyper param config file Load --##
|
28 |
+
config = load_hparams('config/predict.json')
|
29 |
+
config = DictX(config)
|
30 |
+
model = markerModel(config.d_model_name, config.p_model_name,
|
31 |
+
config.lr, config.dropout, config.layer_features, config.loss_fn, config.layer_limit, config.pretrained['chem'], config.pretrained['prot'])
|
32 |
+
#model.load_state_dict(torch.load(r"J:\libray\DeepDAP\DeepDAP\OSC\dap.pt"))
|
33 |
+
# model = BiomarkerModel.load_from_checkpoint('./biomarker_bindingdb_train8595_pretopre/3477h3wf/checkpoints/epoch=30-step=7284.ckpt').to(device_biomarker)
|
34 |
+
model = markerModel.load_from_checkpoint(config.load_checkpoint,strict=False)
|
35 |
+
model.eval()
|
36 |
+
model.freeze()
|
37 |
+
|
38 |
+
if device_biomarker.type == 'cuda':
|
39 |
+
model = torch.nn.DataParallel(model)
|
40 |
+
|
41 |
+
def get_marker(drug_inputs, prot_inputs):
|
42 |
+
output_preds = model(drug_inputs, prot_inputs)
|
43 |
+
|
44 |
+
predict = torch.squeeze( (output_preds)).tolist()
|
45 |
+
|
46 |
+
# output_preds = torch.relu(output_preds)
|
47 |
+
# predict = torch.tanh(output_preds)
|
48 |
+
# predict = predict.squeeze(dim=1).tolist()
|
49 |
+
|
50 |
+
return predict
|
51 |
+
|
52 |
+
|
53 |
+
def marker_prediction(smiles, aas):
|
54 |
+
try:
|
55 |
+
aas_input = []
|
56 |
+
for ass_data in aas:
|
57 |
+
aas_input.append(' '.join(list(ass_data)))
|
58 |
+
|
59 |
+
a_inputs = tokenizer(smiles, padding='max_length', max_length=510, truncation=True, return_tensors="pt")
|
60 |
+
# d_inputs = tokenizer(smiles, truncation=True, return_tensors="pt")
|
61 |
+
a_input_ids = a_inputs['input_ids'].to(device)
|
62 |
+
a_attention_mask = a_inputs['attention_mask'].to(device)
|
63 |
+
a_inputs = {'input_ids': a_input_ids, 'attention_mask': a_attention_mask}
|
64 |
+
|
65 |
+
d_inputs = d_tokenizer(aas_input, padding='max_length', max_length=510, truncation=True, return_tensors="pt")
|
66 |
+
# p_inputs = prot_tokenizer(aas_input, truncation=True, return_tensors="pt")
|
67 |
+
d_input_ids = d_inputs['input_ids'].to(device)
|
68 |
+
d_attention_mask = d_inputs['attention_mask'].to(device)
|
69 |
+
d_inputs = {'input_ids': d_input_ids, 'attention_mask': d_attention_mask}
|
70 |
+
|
71 |
+
output_predict = get_marker(a_inputs, d_inputs)
|
72 |
+
|
73 |
+
output_list = [{'acceptor': smiles[i], 'donor': aas[i], 'predict': output_predict[i]} for i in range(0,len(aas))]
|
74 |
+
|
75 |
+
return output_list
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
print(e)
|
79 |
+
return {'Error_message': e}
|
80 |
+
|
81 |
+
|
82 |
+
def smiles_aas_test(file):
|
83 |
+
|
84 |
+
batch_size = 80
|
85 |
+
try:
|
86 |
+
datas = []
|
87 |
+
marker_list = []
|
88 |
+
marker_datas = []
|
89 |
+
|
90 |
+
smiles_aas = pd.read_csv(file)
|
91 |
+
|
92 |
+
## -- 1 to 1 pair predict check -- ##
|
93 |
+
for data in smiles_aas.values:
|
94 |
+
marker_datas.append([data[2 ], data[1]])
|
95 |
+
if len(marker_datas) == batch_size:
|
96 |
+
marker_list.append(list(marker_datas))
|
97 |
+
marker_datas.clear()
|
98 |
+
|
99 |
+
if len(marker_datas) != 0:
|
100 |
+
marker_list.append(list(marker_datas))
|
101 |
+
marker_datas.clear()
|
102 |
+
|
103 |
+
for marker_datas in tqdm(marker_list, total=len(marker_list)):
|
104 |
+
smiles_d , smiles_a = zip(*marker_datas)
|
105 |
+
output_pred = marker_prediction(list(smiles_d), list(smiles_a) )
|
106 |
+
if len(datas) == 0:
|
107 |
+
datas = output_pred
|
108 |
+
else:
|
109 |
+
datas = datas + output_pred
|
110 |
+
datas = pd.DataFrame(datas)
|
111 |
+
# ## -- Export result data to csv -- ##
|
112 |
+
# df = pd.DataFrame(datas)
|
113 |
+
# df.to_csv('./results/predictData_nontonon_bindingdb_test.csv', index=None)
|
114 |
+
|
115 |
+
# print(df)
|
116 |
+
return datas
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
print(e)
|
120 |
+
return {'Error_message': e}
|
121 |
+
|
test.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1081233b2f0b3c77752a98b3c9e4ae065cb21aae4e3e5d31f8d673a1c2069ded
|
3 |
+
size 81596523
|