import streamlit as st import pandas as pd import rdkit import streamlit_ketcher from streamlit_ketcher import st_ketcher import run # Page setup st.set_page_config(page_title="DeepDAP", page_icon="🔋", layout="wide") st.title("🔋DeepDAP") # Connect to the Google Sheet url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap" df1 = pd.read_csv(url1, dtype=str, encoding='utf-8') text_search = st.text_input("🔍Search papers or molecules", value="") m1 = df1["Donor_Name"].str.contains(text_search) m2 = df1["reference"].str.contains(text_search) m3 = df1["Acceptor_Name"].str.contains(text_search) df_search = df1[m1 | m2|m3] if text_search: st.write(df_search) st.download_button( "⬇️Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True) edited_df = st.data_editor(df1, num_rows="dynamic") st.download_button( "⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True ) molecule = st.text_input("👨‍🔬Molecule") smile_code = st_ketcher(molecule) st.markdown("🏆New SMILES of edited molecules: {smile_code }") acceptor= st.text_input("🎈SMILES of acceptor") donor = st.text_input("🎈SMILES of donor") try: pce = run.smiles_aas_test( str(acceptor ), str(donor) ) st.markdown("⚡PCE: ``{pce}``") except: st.markdown("⚡PCE: None ")