Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import rdkit
|
5 |
+
import streamlit_ketcher
|
6 |
+
from streamlit_ketcher import st_ketcher
|
7 |
+
import abcBERT
|
8 |
+
import RF
|
9 |
+
|
10 |
+
|
11 |
+
# Page setup
|
12 |
+
st.set_page_config(page_title="DeepAcceptor", page_icon="🔋", layout="wide")
|
13 |
+
st.title("🔋DeepAcceptor")
|
14 |
+
|
15 |
+
# Connect to the Google Sheet
|
16 |
+
url1 = r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw/gviz/tq?tqx=out:csv&sheet=accept"
|
17 |
+
url = r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw/gviz/tq?tqx=out:csv&sheet=111"
|
18 |
+
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
|
19 |
+
col1, col2 = st.columns(2)
|
20 |
+
with col1:
|
21 |
+
st.subheader("🔍**Search papers or molecules**")
|
22 |
+
text_search = st.text_input(label="_", value="",label_visibility="hidden" )
|
23 |
+
m1 = df1["name"].str.contains(text_search)
|
24 |
+
m2 = df1["reference"].str.contains(text_search)
|
25 |
+
df_search = df1[m1 | m2]
|
26 |
+
with col2:
|
27 |
+
|
28 |
+
st.link_button("📝**DATABASE**", r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw")
|
29 |
+
st.markdown('👆If you want to update the database, click the button.')
|
30 |
+
if text_search:
|
31 |
+
st.write(df_search)
|
32 |
+
st.download_button( "⬇️ Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
|
33 |
+
edited_df = st.data_editor(df1, num_rows="dynamic")
|
34 |
+
edited_df.to_csv(url)
|
35 |
+
st.download_button(
|
36 |
+
"⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
|
37 |
+
)
|
38 |
+
st.header("📋**Input the SMILES of Molecule**")
|
39 |
+
col3, col4= st.columns(2)
|
40 |
+
|
41 |
+
with col3:
|
42 |
+
|
43 |
+
molecule = st.text_input(label="*",label_visibility="hidden")
|
44 |
+
with col4:
|
45 |
+
st.markdown('👇An example of Y6.')
|
46 |
+
if st.button("🙋♂️**Example**"):
|
47 |
+
molecule = 'O=C(C(C=C(F)C(F)=C1)=C1C/2=C(C#N)/C#N)C2=C/C3=C(CCCCCCCCCCC)C(S4)=C(S3)C5=C4C6=C(N5CC(CC)CCCC)C7=C(C(SC8=C9SC(/C=C%10C(C(C=C(F)C(F)=C%11)=C%11C\%10=C(C#N)C#N)=O)=C8CCCCCCCCCCC)=C9N7CC(CC)CCCC)C%12=NSN=C6%12'
|
48 |
+
|
49 |
+
smile_code = st_ketcher(molecule)
|
50 |
+
st.subheader(f"✨**Smiles code**: {smile_code}")
|
51 |
+
mol = rdkit.Chem.MolFromSmiles(smile_code)
|
52 |
+
if mol is None:
|
53 |
+
st.subheader('**❗The SMILES is ERROR❗**')
|
54 |
+
else:
|
55 |
+
try :
|
56 |
+
P = RF.main( str(smile_code ) )
|
57 |
+
st.subheader(f"⚡**PCE predicted by RF**: {P}")
|
58 |
+
except:
|
59 |
+
|
60 |
+
st.subheader(f"⚡**PCE predicted by RF**: [Running]")
|
61 |
+
try:
|
62 |
+
pce = abcBERT.main( str(smile_code ) )
|
63 |
+
st.subheader(f"⚡**PCE predicted by abcBERT**: {pce}")
|
64 |
+
except:
|
65 |
+
st.subheader(f"⚡**PCE predicted by abcBERT**: [Running]")
|