jinysun commited on
Commit
ecad7f4
·
1 Parent(s): e484c23

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -20
app.py CHANGED
@@ -6,43 +6,44 @@ import streamlit_ketcher
6
  from streamlit_ketcher import st_ketcher
7
  import abcBERT
8
  import RF
9
-
 
10
  # Page setup
11
  st.set_page_config(page_title="DeepAcceptor", page_icon="🔋", layout="wide")
12
  st.title("🔋DeepAcceptor")
13
 
14
  # Connect to the Google Sheet
15
-
16
- url1 = r"https://docs.google.com/spreadsheets/d/1HfCTquggWtXMevB-DenMKDs-q8JUya949mf0XPDRmtM/gviz/tq?tqx=out:csv&sheet=nfa"
17
  df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
18
-
19
- text_search = st.text_input("🔍Search papers or molecules", value="")
20
-
21
- m1 = df1["name"].str.contains(text_search)
22
- m2 = df1["reference"].str.contains(text_search)
23
- df_search = df1[m1 | m2]
 
 
24
  if text_search:
 
 
25
  st.write(df_search)
26
  st.download_button( "⬇️ Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
27
  edited_df = st.data_editor(df1, num_rows="dynamic")
28
-
29
  st.download_button(
30
  "⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
31
  )
32
 
33
- molecule = st.text_input("🎄Molecule")
34
  smile_code = st_ketcher(molecule)
35
- st.markdown(f"Smiles code: {smile_code}")
 
 
36
 
37
- try:
38
- P = RF.main( str(smile_code ) )
39
- st.markdown(f"⚡PCE predicted by RF: {P}")
40
- except:
41
- st.markdown(f"⚡PCE predicted by RF: None")
42
-
43
  try:
44
  pce = abcBERT.main( str(smile_code ) )
45
- st.markdown(f"PCE predicted by abcBERT: {pce}")
46
  except:
47
- st.markdown(f"PCE predicted by abcBERT: None")
48
 
 
6
  from streamlit_ketcher import st_ketcher
7
  import abcBERT
8
  import RF
9
+ from streamlit_gsheets import GSheetsConnection
10
+
11
  # Page setup
12
  st.set_page_config(page_title="DeepAcceptor", page_icon="🔋", layout="wide")
13
  st.title("🔋DeepAcceptor")
14
 
15
  # Connect to the Google Sheet
16
+ url1 = r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw/gviz/tq?tqx=out:csv&sheet=accept"
17
+ url = r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw/gviz/tq?tqx=out:csv&sheet=111"
18
  df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
19
+ col1, col2 = st.columns(2)
20
+ with col1:
21
+
22
+ text_search = st.text_input("🔍**Search papers or molecules**", value="")
23
+ m1 = df1["name"].str.contains(text_search)
24
+ m2 = df1["reference"].str.contains(text_search)
25
+ df_search = df1[m1 | m2]
26
+ with col2:
27
  if text_search:
28
+ st.link_button("📝**DATABASE**", r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw")
29
+ st.caption('👆If you want to update the database, click the button.')
30
  st.write(df_search)
31
  st.download_button( "⬇️ Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
32
  edited_df = st.data_editor(df1, num_rows="dynamic")
33
+ edited_df.to_csv(url)
34
  st.download_button(
35
  "⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
36
  )
37
 
38
+ molecule = st.text_input("📋**Molecule**")
39
  smile_code = st_ketcher(molecule)
40
+ st.subheader(f"✨**Smiles code**: {smile_code}")
41
+ P = RF.main( str(smile_code ) )
42
+ st.header(f":blue[⚡**PCE predicted by RF**]: {P}")
43
 
 
 
 
 
 
 
44
  try:
45
  pce = abcBERT.main( str(smile_code ) )
46
+ st.header(f":blue[⚡**PCE predicted by abcBERT**]: {pce}")
47
  except:
48
+ st.header(f":blue[⚡**PCE predicted by abcBERT**]: :red["Running"]")
49