Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,11 @@ import boto3
|
|
18 |
from io import BytesIO
|
19 |
from datetime import datetime
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
23 |
|
@@ -27,13 +32,9 @@ login(token=HF_TOKEN)
|
|
27 |
dtype = torch.bfloat16
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
base_model = "black-forest-labs/FLUX.1-dev"
|
30 |
-
|
31 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
32 |
-
|
33 |
MAX_SEED = 2**32-1
|
34 |
|
35 |
-
# pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
36 |
-
|
37 |
class calculateDuration:
|
38 |
def __init__(self, activity_name=""):
|
39 |
self.activity_name = activity_name
|
@@ -86,7 +87,8 @@ def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, pr
|
|
86 |
width=width,
|
87 |
height=height,
|
88 |
generator=generator,
|
89 |
-
joint_attention_kwargs={"scale": lora_scale}
|
|
|
90 |
).images[0]
|
91 |
|
92 |
progress(99, "Generate success!")
|
@@ -95,8 +97,8 @@ def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, pr
|
|
95 |
|
96 |
def run_lora(prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
|
97 |
|
98 |
-
with calculateDuration("Unloading LoRA"):
|
99 |
-
|
100 |
|
101 |
# Load LoRA weights
|
102 |
if lora_repo and lora_name:
|
|
|
18 |
from io import BytesIO
|
19 |
from datetime import datetime
|
20 |
|
21 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
22 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
23 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
24 |
+
os.environ["HF_HOME"] = cache_path
|
25 |
+
|
26 |
|
27 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
28 |
|
|
|
32 |
dtype = torch.bfloat16
|
33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
base_model = "black-forest-labs/FLUX.1-dev"
|
|
|
35 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
|
|
36 |
MAX_SEED = 2**32-1
|
37 |
|
|
|
|
|
38 |
class calculateDuration:
|
39 |
def __init__(self, activity_name=""):
|
40 |
self.activity_name = activity_name
|
|
|
87 |
width=width,
|
88 |
height=height,
|
89 |
generator=generator,
|
90 |
+
joint_attention_kwargs={"scale": lora_scale},
|
91 |
+
max_sequence_length=256
|
92 |
).images[0]
|
93 |
|
94 |
progress(99, "Generate success!")
|
|
|
97 |
|
98 |
def run_lora(prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
|
99 |
|
100 |
+
# with calculateDuration("Unloading LoRA"):
|
101 |
+
# pipe.unload_lora_weights()
|
102 |
|
103 |
# Load LoRA weights
|
104 |
if lora_repo and lora_name:
|