Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -36,11 +36,11 @@ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).
|
|
36 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
37 |
|
38 |
txt2img_pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
39 |
-
txt2img_pipe.__class__.load_lora_into_transformer = classmethod(load_lora_into_transformer)
|
40 |
|
41 |
# img2img model
|
42 |
img2img_pipe = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=txt2img_pipe.transformer, text_encoder=txt2img_pipe.text_encoder, tokenizer=txt2img_pipe.tokenizer, text_encoder_2=txt2img_pipe.text_encoder_2, tokenizer_2=txt2img_pipe.tokenizer_2, torch_dtype=dtype)
|
43 |
-
img2img_pipe.__class__.load_lora_into_transformer = classmethod(load_lora_into_transformer)
|
44 |
|
45 |
|
46 |
MAX_SEED = 2**32 - 1
|
|
|
36 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
37 |
|
38 |
txt2img_pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
39 |
+
# txt2img_pipe.__class__.load_lora_into_transformer = classmethod(load_lora_into_transformer)
|
40 |
|
41 |
# img2img model
|
42 |
img2img_pipe = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=txt2img_pipe.transformer, text_encoder=txt2img_pipe.text_encoder, tokenizer=txt2img_pipe.tokenizer, text_encoder_2=txt2img_pipe.text_encoder_2, tokenizer_2=txt2img_pipe.tokenizer_2, torch_dtype=dtype)
|
43 |
+
# img2img_pipe.__class__.load_lora_into_transformer = classmethod(load_lora_into_transformer)
|
44 |
|
45 |
|
46 |
MAX_SEED = 2**32 - 1
|