Spaces:
Runtime error
Runtime error
File size: 7,036 Bytes
c4a668c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import torch
import torch.nn as nn
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, AutoProcessor, AutoModelForCausalLM
class CLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
if not delay_load:
self.load_model()
elif getattr(args, 'unfreeze_mm_vision_tower', False):
self.load_model()
else:
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
def load_model(self, device_map=None):
if self.is_loaded:
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
return
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(f'Unexpected select feature: {self.select_feature}')
return image_features
@torch.no_grad()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features, image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches_per_side(self):
return self.config.image_size // self.config.patch_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
class FlorenceVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
if not delay_load:
self.load_model()
elif getattr(args, 'unfreeze_mm_vision_tower', False):
self.load_model()
else:
self.load_model()
def load_model(self, device_map=None):
if self.is_loaded:
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
return
self.image_processor = AutoProcessor.from_pretrained(self.vision_tower_name, trust_remote_code=True)
self.vision_tower = AutoModelForCausalLM.from_pretrained(self.vision_tower_name, trust_remote_code=True).to(torch.bfloat16)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
@torch.no_grad()
def forward(self, images):
## hard code for the task prompt
# task = [
# 'Describe in detail what is shown in the image.',
# 'What is the text in the image?',
# 'Locate the objects in the image, with their descriptions.',
# 'Locate the region proposals in the image.'
# ]
task_ids = torch.tensor([
[0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2, 1],
[0, 2264, 16, 5, 2788, 11, 5, 2274, 116, 2, 1, 1, 1, 1],
[0, 574, 22486, 5, 8720, 11, 5, 2274, 6, 19, 49, 24173, 4, 2]
]).to(device=self.device)
# task = [
# 'What is the text in the image?',
# 'What is the text in the image, with regions?',
# 'What does the image describe?',
# 'Describe in detail what is shown in the image.',
# 'Describe with a paragraph what is shown in the image.',
# 'Locate the objects with category name in the image.',
# 'Locate the objects in the image, with their descriptions.',
# 'Locate the region proposals in the image.'
# ]
# task_ids = torch.tensor([
# [0, 2264, 16, 5, 2788, 11, 5, 2274, 116, 2, 1, 1, 1, 1],
# [0, 2264, 16, 5, 2788, 11, 5, 2274, 6, 19, 3806, 116, 2, 1],
# [0, 2264, 473, 5, 2274, 6190, 116, 2, 1, 1, 1, 1, 1, 1],
# [0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2, 1],
# [0, 47066, 21700, 19, 10, 17818, 99, 16, 2343, 11, 5, 2274, 4, 2],
# [0, 574, 22486, 5, 8720, 19, 4120, 766, 11, 5, 2274, 4, 2, 1],
# [0, 574, 22486, 5, 8720, 11, 5, 2274, 6, 19, 49, 24173, 4, 2],
# [0, 574, 22486, 5, 976, 5327, 11, 5, 2274, 4, 2, 1, 1, 1]
# ]).to(device=self.device)
with torch.no_grad():
generated_ids, image_feature, encoder_last_hidden_state = self.vision_tower.generate(
input_ids=task_ids,
pixel_values=images,
max_new_tokens=1,
do_sample=False,
num_beams=1,
)
return image_feature, encoder_last_hidden_state
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches_per_side(self):
return self.config.image_size // self.config.patch_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
|