import torch import torch.nn as nn from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, AutoProcessor, AutoModelForCausalLM class FlorenceVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower if not delay_load: self.load_model() elif getattr(args, 'unfreeze_mm_vision_tower', False): self.load_model() else: self.load_model() def load_model(self, device_map=None): if self.is_loaded: print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) return self.image_processor = AutoProcessor.from_pretrained(self.vision_tower_name, trust_remote_code=True) self.vision_tower = AutoModelForCausalLM.from_pretrained(self.vision_tower_name, trust_remote_code=True).to(torch.bfloat16) self.vision_tower.requires_grad_(False) self.is_loaded = True @torch.no_grad() def forward(self, images): ## hard code for the task prompt # task = [ # 'Describe in detail what is shown in the image.', # 'What is the text in the image?', # 'Locate the objects in the image, with their descriptions.', # ] task_ids = torch.tensor([ [0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2, 1], [0, 2264, 16, 5, 2788, 11, 5, 2274, 116, 2, 1, 1, 1, 1], [0, 574, 22486, 5, 8720, 11, 5, 2274, 6, 19, 49, 24173, 4, 2] ]).to(device=self.device) with torch.no_grad(): generated_ids, image_feature, encoder_last_hidden_state = self.vision_tower.generate( input_ids=task_ids, pixel_values=images, max_new_tokens=1, do_sample=False, num_beams=1, ) return image_feature, encoder_last_hidden_state @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2