Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
6 |
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE =
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
|
|
|
|
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
image = pipe(
|
29 |
prompt = prompt,
|
30 |
-
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
height = height,
|
35 |
-
|
|
|
|
|
36 |
).images[0]
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
examples = [
|
41 |
-
"
|
42 |
-
"
|
43 |
-
"A
|
|
|
44 |
]
|
45 |
|
46 |
css="""
|
@@ -50,17 +43,12 @@ css="""
|
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(f"""
|
62 |
-
|
63 |
-
|
64 |
""")
|
65 |
|
66 |
with gr.Row():
|
@@ -76,16 +64,9 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
run_button = gr.Button("Run", scale=0)
|
77 |
|
78 |
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
seed = gr.Slider(
|
90 |
label="Seed",
|
91 |
minimum=0,
|
@@ -103,7 +84,7 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
minimum=256,
|
104 |
maximum=MAX_IMAGE_SIZE,
|
105 |
step=32,
|
106 |
-
value=
|
107 |
)
|
108 |
|
109 |
height = gr.Slider(
|
@@ -111,36 +92,40 @@ with gr.Blocks(css=css) as demo:
|
|
111 |
minimum=256,
|
112 |
maximum=MAX_IMAGE_SIZE,
|
113 |
step=32,
|
114 |
-
value=
|
115 |
)
|
116 |
|
117 |
with gr.Row():
|
118 |
-
|
119 |
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance
|
121 |
-
minimum=
|
122 |
-
maximum=
|
123 |
step=0.1,
|
124 |
-
value=
|
125 |
)
|
126 |
-
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
-
maximum=
|
131 |
step=1,
|
132 |
-
value=
|
133 |
)
|
134 |
|
135 |
gr.Examples(
|
136 |
examples = examples,
|
137 |
-
|
|
|
|
|
|
|
138 |
)
|
139 |
|
140 |
-
|
|
|
141 |
fn = infer,
|
142 |
-
inputs = [prompt,
|
143 |
-
outputs = [result]
|
144 |
)
|
145 |
|
146 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
import torch
|
5 |
+
import spaces
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
|
9 |
+
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
16 |
|
17 |
+
@spaces.GPU(duration=190)
|
18 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
19 |
if randomize_seed:
|
20 |
seed = random.randint(0, MAX_SEED)
|
|
|
21 |
generator = torch.Generator().manual_seed(seed)
|
|
|
22 |
image = pipe(
|
23 |
prompt = prompt,
|
24 |
+
width = width,
|
|
|
|
|
|
|
25 |
height = height,
|
26 |
+
num_inference_steps = num_inference_steps,
|
27 |
+
generator = generator,
|
28 |
+
guidance_scale=guidance_scale
|
29 |
).images[0]
|
30 |
+
return image, seed
|
31 |
+
|
|
|
32 |
examples = [
|
33 |
+
"a cat holding a sign that says hello world",
|
34 |
+
"A scene full of classic video game characters as stickers on a black water bottle",
|
35 |
+
"A futuristic biocity that is located in the former site of Portsmouth, New Hampshire. It has a mix of old and new buildings, green spaces, and water features. It also has six large artificial floating islands off of its coastline,(zenithal angle), ((by Iwan Baan)), coastal city,blue sky and white clouds,the sun is shining brightly,ultra-wide angle,",
|
36 |
+
"Depict a breathtaking scene of a meteor rain showering down from a starry night sky. The meteors should vary in size and brightness, streaking across the sky with vibrant tails of light, creating a dazzling display. Below, a serene landscape—perhaps a tranquil lake reflecting the celestial spectacle, or a rugged mountain range—should enhance the sense of wonder. The foreground can include silhouettes of trees or figures gazing up in awe at the cosmic event. The overall atmosphere should evoke feelings of magic and inspiration, capturing the beauty and mystery of the universe.",
|
37 |
]
|
38 |
|
39 |
css="""
|
|
|
43 |
}
|
44 |
"""
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
with gr.Blocks(css=css) as demo:
|
47 |
|
48 |
with gr.Column(elem_id="col-container"):
|
49 |
+
gr.Markdown(f"""# FLUX.1 [dev]
|
50 |
+
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
51 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
52 |
""")
|
53 |
|
54 |
with gr.Row():
|
|
|
64 |
run_button = gr.Button("Run", scale=0)
|
65 |
|
66 |
result = gr.Image(label="Result", show_label=False)
|
67 |
+
|
68 |
with gr.Accordion("Advanced Settings", open=False):
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
seed = gr.Slider(
|
71 |
label="Seed",
|
72 |
minimum=0,
|
|
|
84 |
minimum=256,
|
85 |
maximum=MAX_IMAGE_SIZE,
|
86 |
step=32,
|
87 |
+
value=1024,
|
88 |
)
|
89 |
|
90 |
height = gr.Slider(
|
|
|
92 |
minimum=256,
|
93 |
maximum=MAX_IMAGE_SIZE,
|
94 |
step=32,
|
95 |
+
value=1024,
|
96 |
)
|
97 |
|
98 |
with gr.Row():
|
99 |
+
|
100 |
guidance_scale = gr.Slider(
|
101 |
+
label="Guidance Scale",
|
102 |
+
minimum=1,
|
103 |
+
maximum=15,
|
104 |
step=0.1,
|
105 |
+
value=3.5,
|
106 |
)
|
107 |
+
|
108 |
num_inference_steps = gr.Slider(
|
109 |
label="Number of inference steps",
|
110 |
minimum=1,
|
111 |
+
maximum=50,
|
112 |
step=1,
|
113 |
+
value=28,
|
114 |
)
|
115 |
|
116 |
gr.Examples(
|
117 |
examples = examples,
|
118 |
+
fn = infer,
|
119 |
+
inputs = [prompt],
|
120 |
+
outputs = [result, seed],
|
121 |
+
cache_examples="lazy"
|
122 |
)
|
123 |
|
124 |
+
gr.on(
|
125 |
+
triggers=[run_button.click, prompt.submit],
|
126 |
fn = infer,
|
127 |
+
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
128 |
+
outputs = [result, seed]
|
129 |
)
|
130 |
|
131 |
+
demo.launch()
|