Spaces:
Runtime error
Runtime error
File size: 1,352 Bytes
e355cb1 c29fe64 3b5bc19 e355cb1 3b5bc19 c1c9aee 3b5bc19 e355cb1 e2e2896 ba32ce3 3b5bc19 d8268cd 3b5bc19 e355cb1 3b5bc19 e355cb1 3b5bc19 e355cb1 3b5bc19 e355cb1 3b5bc19 e355cb1 ba32ce3 ca68a55 ba32ce3 3b5bc19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
import numpy as np
import torch
import spaces
from diffusers import DiffusionPipeline
from PIL import Image
multi_view_diffusion_pipeline = DiffusionPipeline.from_pretrained(
"jkorstad/multi-view-diffusion",
custom_pipeline="dylanebert/multi-view-diffusion",
torch_dtype=torch.float16,
trust_remote_code=True,
).to("cuda")
@spaces.GPU
def run(image, elevation):
image = np.array(image, dtype=np.float32) / 255.0
images = multi_view_diffusion_pipeline(
"", image, guidance_scale=5, num_inference_steps=30, elevation=elevation
)
images = [Image.fromarray((img * 255).astype("uint8")) for img in images]
width, height = images[0].size
grid_img = Image.new("RGB", (2 * width, 2 * height))
grid_img.paste(images[0], (0, 0))
grid_img.paste(images[1], (width, 0))
grid_img.paste(images[2], (0, height))
grid_img.paste(images[3], (width, height))
return grid_img
demo = gr.Interface(
title="Quick demo of the multi-view from an image model",
fn=run,
inputs=[
gr.Image(label="Input Image"),
gr.Slider(0, 100, 10, label="Elevation", info="Choose the elevation value for the generated multi view output. A higher value will be closest to a birds eye view of your object.")
],
outputs=gr.Image(label="Output Image")
)
demo.launch() |