Spaces:
Sleeping
Sleeping
File size: 12,542 Bytes
3403bc2 fb53d5e 63ac6d8 fb53d5e f144f7c 092a34e fb53d5e 3ed607f fb53d5e 95a0f32 fb53d5e 95a0f32 2f406ee 95a0f32 2f406ee 3ae1405 fb53d5e 2f406ee fb53d5e 3403bc2 c2ac70f 3403bc2 c2ac70f 1fa9151 c2ac70f 3403bc2 c2ac70f 3403bc2 c2ac70f 3403bc2 0cdd985 481e2a4 c2ac70f 481e2a4 3403bc2 8bb8bca 3e1ee4f c0b662b 8bb8bca 3403bc2 0cdd985 01f7e08 0cdd985 67d9fd3 3e1ee4f 65490be 3e1ee4f 0cdd985 3e1ee4f 0cdd985 01f7e08 aed7a0e 481e2a4 0cdd985 3e1ee4f 481e2a4 0cdd985 01f7e08 0cdd985 3403bc2 67d9fd3 c2ac70f 3403bc2 c2ac70f 084d3d6 3403bc2 dcf581a 3403bc2 c2ac70f 084d3d6 aed7a0e c2ac70f aed7a0e c2ac70f aed7a0e 75255f7 c2ac70f 3403bc2 aed7a0e c2ac70f aed7a0e c2ac70f 3403bc2 c2ac70f 3403bc2 084d3d6 3403bc2 c2ac70f 75255f7 c2ac70f 3403bc2 4ac062a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi
from collections import defaultdict
# ------------------------------------------------------
# Get spaces with more details
api = HfApi()
spaces = api.list_spaces(limit=60000) # Limiting to 60000 for now
# Create a DataFrame
data = []
for space in spaces:
data.append({
'id': space.id,
'title': space.id.split('/')[-1],
'author': space.author if space.author else space.id.split('/')[0],
'likes': space.likes,
'tags': space.tags if hasattr(space, 'tags') else [],
})
df = pd.DataFrame(data)
print("Total spaces collected:", len(df))
print("\nSample of the data:")
print(df.head())
# ------------------------------------------------------
# Define categories and their keywords
categories = {
'Text-to-Speech': ['tts', 'speech', 'voice', 'audio', 'kokoro'],
'Transcription': ['transcribe', 'transcription'],
'Agents': ['agent', 'agents', 'smol', 'multi-step', 'autobot', 'autoGPT' 'agentic'],
'Image Gen/Editing': ['stable-diffusion', 'diffusion', 'flux', 'dalle', 'CLIP',
'comic', 'gan', 'sdxl', 'pic', 'img', 'stable', 'midjourney',
'diffusion', 'image', 'ControlNet', 'Control Net', 'dreambooth', 'blip', 'LoRA', 'img2img', 'style', 'art'],
'Video': ['video', 'animation', 'motion', 'sora'],
'Face/Portrait': ['face', 'portrait', 'gaze', 'facial'],
'Chat/LLM': ['chat', 'llm', 'gpt', 'llama', 'text', 'language'],
'3D': ['3d', 'mesh', 'point-cloud', 'depth'],
'Audio': ['audio', 'tts', 'music', 'whisper', 'sound', 'voice'],
'Vision': ['vision', 'detection', 'recognition', 'classifier'],
'CLIP': ['image-to-text', 'describe-image'],
'Games': ['game', 'games', 'play', 'playground'],
'Finance': ['finance', 'stock', 'money', 'currency', 'bank', 'market'],
'SAM': ['sam', 'segmentation', 'mask'],
'Science': ['science', 'physics', 'chemistry', 'biology', 'math', 'astronomy', 'geology', 'meteorology', 'engineering', 'medicine', 'health', 'nutrition', 'environment', 'ecology', 'geography', 'geology', 'geophysics'],
'Education': ['education', 'school', 'university', 'college', 'teaching', 'learning', 'study', 'research'],
'Graph': ['graph', 'network', 'node', 'edge', 'path', 'tree', 'cycle', 'flow', 'matching', 'coloring', 'swarm'],
'Research': ['research', 'study', 'experiment', 'paper', 'discovery', 'innovation', 'exploration', 'analysis'],
'Document Analyis': ['pdf', 'RAG', 'idefecs'],
'WebGPU': ['localModel', 'webGPU'],
'Point Tracking': ['CoTracker', 'tapir', 'tapnet', 'point', 'track'],
'Games': ['game', 'Unity', 'UE5', 'Unreal'],
'Leaderboard': ['arena', 'leaderboard', 'timeline'],
'Other': [] # Default category
}
def categorize_space(title, tags):
title_lower = title.lower()
# Convert tags to lowercase if tags exist
tags_lower = [t.lower() for t in tags] if tags else []
for category, keywords in categories.items():
# Check both title and tags for keywords
if any(keyword in title_lower for keyword in keywords) or \
any(keyword in tag for keyword in keywords for tag in tags_lower):
return category
return 'Other'
# Add category to DataFrame
df['category'] = df.apply(lambda x: categorize_space(x['title'], x['tags']), axis=1)
# Show category distribution
category_counts = df['category'].value_counts()
print("\nCategory Distribution:")
print(category_counts)
# Show sample spaces from each category
print("\nSample spaces from each category:")
for category in categories.keys():
print(f"\n{category}:")
sample = df[df['category'] == category].head(3)
print(sample[['title', 'likes']].to_string())
# ------------------------------------------------------
# Add total likes per category
category_likes = df.groupby('category')['likes'].sum().sort_values(ascending=False)
print("Total likes per category:")
print(category_likes)
print("\nTop 10 spaces in each category (sorted by likes):")
for category in categories.keys():
print(f"\n=== {category} ===")
top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes']]
# Format output with padding for better readability
print(top_10.to_string(index=False))
# ------------------------------------------------------
# Add space URLs
df['url'] = 'https://huggingface.co/spaces/' + df['id']
# Show the top 10 spaces from each category with their links
# print("Top 10 spaces in each category with links:")
# for category in categories.keys():
# print(f"\n=== {category} ===")
# top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes', 'url']]
# Format output with padding for better readability
# print(top_5.to_string(index=False))
# ------------------------------------------------------
def search_spaces(search_text="", category="All Categories", offset=0, limit=100):
# Filter spaces
if category == "All Categories":
spaces_df = df
else:
spaces_df = df[df['category'] == category]
if search_text:
spaces_df = spaces_df[spaces_df['title'].str.lower().str.contains(search_text.lower())]
# Sort by likes and get total count
spaces_df = spaces_df.sort_values('likes', ascending=False)
total_spaces = len(spaces_df)
total_pages = (total_spaces + limit - 1) // limit
current_page = (offset // limit) + 1
# Get the current page of spaces
spaces = spaces_df.iloc[offset:offset + limit][['title', 'likes', 'url', 'category']]
total_likes = spaces_df['likes'].sum()
# Generate HTML content
html_content = f"""
<div style='margin-bottom: 20px; padding: 10px; background-color: var(--color-background-primary);
border: 1px solid var(--color-border-primary); border-radius: 5px;'>
<h3 style='color: var(--color-text-primary);'>Statistics:</h3>
<p style='color: var(--color-text-primary);'>Page {current_page} of {total_pages}</p>
<p style='color: var(--color-text-primary);'>Showing {offset + 1}-{min(offset + limit, total_spaces)} of {total_spaces} Spaces</p>
<p style='color: var(--color-text-primary);'>Total Likes: {total_likes:,}</p>
</div>
<div style='max-height: 800px; overflow-y: auto;'>
<div style='display: grid; grid-template-columns: repeat(3, minmax(300px, 1fr));
gap: 15px; padding: 10px; width: 100%; max-width: 1800px; margin: 0 auto;'>
"""
for _, row in spaces.iterrows():
html_content += f"""
<div style='padding: 15px;
border: 2px solid var(--color-border-primary);
border-radius: 5px;
background-color: var(--color-background-primary);
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
display: flex;
flex-direction: column;
height: 100%;
position: relative;
min-width: 0;
<h3 style='margin-top: 0; margin-bottom: 10px;
overflow: hidden; text-overflow: ellipsis;
word-wrap: break-word; hyphens: auto;'>
<a href='{row['url']}' target='_blank'
style='color: #2196F3;
text-decoration: none;
font-weight: bold;
display: -webkit-box;
-webkit-line-clamp: 2;
-webkit-box-orient: vertical;
overflow: hidden;'>{row['title']}</a>
</h3>
<div style='height: 2px;
background: var(--color-border-primary);
margin: 10px 0;
width: 100%;'></div>
<p style='color: var(--color-text-primary); margin: 8px 0;'>
<span style='background-color: var(--color-accent-soft);
padding: 2px 8px;
border-radius: 12px;
font-size: 0.9em;
display: inline-block;
max-width: 100%;
overflow: hidden;
text-overflow: ellipsis;'>
{row['category']}
</span>
</p>
<p style='color: var(--color-text-primary);
margin-top: auto;
padding-top: 10px;
border-top: 1px solid var(--color-border-primary);'>
❤️ {row['likes']:,} likes
</p>
</div>
"""
html_content += "</div></div>"
has_more = offset + limit < total_spaces
remaining = total_spaces - (offset + limit) if has_more else 0
can_go_back = offset > 0
return html_content, has_more, remaining, can_go_back, current_page, total_pages
def create_app():
with gr.Blocks(title="Hugging Face Spaces Explorer", theme=gr.themes.Soft()) as app:
offset = gr.State(value=0)
gr.Markdown("""
# 🤗 Hugging Face Spaces Explorer
Explore and discover popular Hugging Face Spaces by category.
Any currently uncategorized spaces will be listed under "Other" or "All Categories",
if you would like to help make Spaces easier to search and filter through feel free
to add on to my project or recommend additional filters!
""")
with gr.Row():
category_dropdown = gr.Dropdown(
choices=["All Categories"] + sorted(df['category'].unique()),
label="Select Category",
value="All Categories"
)
search_input = gr.Textbox(
label="Search Spaces",
placeholder="Enter search terms..."
)
spaces_display = gr.HTML()
with gr.Row():
prev_button = gr.Button("← Previous Page", visible=False)
page_info = gr.Markdown("", visible=False)
next_button = gr.Button("Next Page →", visible=False)
def load_page(search_text, category, current_offset):
content, has_more, remaining, can_go_back, current_page, total_pages = search_spaces(
search_text, category, current_offset
)
return {
spaces_display: content,
next_button: gr.update(visible=has_more),
prev_button: gr.update(visible=can_go_back),
page_info: gr.update(
visible=True,
value=f"*Page {current_page} of {total_pages} ({remaining} more spaces available)*"
),
offset: current_offset
}
def next_page(search_text, category, current_offset):
return load_page(search_text, category, current_offset + 100)
def prev_page(search_text, category, current_offset):
new_offset = max(0, current_offset - 100)
return load_page(search_text, category, new_offset)
def reset_and_search(search_text, category):
return load_page(search_text, category, 0)
# Initial load
app.load(
fn=lambda: reset_and_search("", "All Categories"),
outputs=[spaces_display, next_button, prev_button, page_info, offset]
)
# Event handlers
category_dropdown.change(
fn=reset_and_search,
inputs=[search_input, category_dropdown],
outputs=[spaces_display, next_button, prev_button, page_info, offset]
)
search_input.change(
fn=reset_and_search,
inputs=[search_input, category_dropdown],
outputs=[spaces_display, next_button, prev_button, page_info, offset]
)
next_button.click(
fn=next_page,
inputs=[search_input, category_dropdown, offset],
outputs=[spaces_display, next_button, prev_button, page_info, offset]
)
prev_button.click(
fn=prev_page,
inputs=[search_input, category_dropdown, offset],
outputs=[spaces_display, next_button, prev_button, page_info, offset]
)
return app
# Launch the app
app = create_app()
app.launch() |