spaces-explorer / app.py
jkorstad's picture
Update app.py
dcf581a verified
raw
history blame
9.48 kB
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi
from collections import defaultdict
# ------------------------------------------------------
# Get spaces with more details
api = HfApi()
spaces = api.list_spaces(limit=40000) # Limiting to 40000 for now
# Create a DataFrame
data = []
for space in spaces:
data.append({
'id': space.id,
'title': space.id.split('/')[-1],
'author': space.author if space.author else space.id.split('/')[0],
'likes': space.likes,
'tags': space.tags if hasattr(space, 'tags') else [],
})
df = pd.DataFrame(data)
print("Total spaces collected:", len(df))
print("\nSample of the data:")
print(df.head())
# ------------------------------------------------------
# Define categories and their keywords
categories = {
'Text-to-Speech': ['tts', 'speech', 'voice', 'audio', 'kokoro'],
'Transcription': ['transcribe', 'transcription'],
'Agents': ['agent', 'agents', 'smol', 'multi-step', 'autobot', 'autoGPT' 'agentic'],
'Image Generation': ['stable-diffusion', 'diffusion', 'flux', 'dalle', 'gan', 'sdxl', 'midjourney', 'diffusion', 'image', 'img2img', 'style', 'art'],
'Video': ['video', 'animation', 'motion', 'sora'],
'Face/Portrait': ['face', 'portrait', 'gaze', 'facial'],
'Chat/LLM': ['chat', 'llm', 'gpt', 'llama', 'text', 'language'],
'3D': ['3d', 'mesh', 'point-cloud', 'depth'],
'Audio': ['audio', 'tts', 'music', 'whisper', 'sound', 'voice'],
'Vision': ['vision', 'detection', 'recognition', 'classifier'],
'CLIP': ['image-to-text', 'describe-image'],
'Games': ['game', 'games', 'play', 'playground'],
'Finance': ['finance', 'stock', 'money', 'currency', 'bank', 'market'],
'SAM': ['sam', 'segmentation', 'mask'],
'Science': ['science', 'physics', 'chemistry', 'biology', 'math', 'astronomy', 'geology', 'meteorology', 'engineering', 'medicine', 'health', 'nutrition', 'environment', 'ecology', 'geography', 'geology', 'geophysics'],
'Education': ['education', 'school', 'university', 'college', 'teaching', 'learning', 'study', 'research'],
'Graph': ['graph', 'network', 'node', 'edge', 'path', 'tree', 'cycle', 'flow', 'matching', 'coloring', 'swarm'],
'Research': ['research', 'study', 'experiment', 'paper', 'discovery', 'innovation', 'exploration', 'analysis'],
'Document Analyis': ['pdf', 'RAG', 'idefecs'],
'WebGPU': ['localModel', 'webGPU'],
'Point Tracking': ['CoTracker', 'tapir', 'tapnet', 'point', 'track'],
'Games': ['game', 'Unity', 'UE5', 'Unreal'],
'Leaderboard': ['arena', 'leaderboard', 'timeline'],
'Other': [] # Default category
}
def categorize_space(title, tags):
title_lower = title.lower()
# Convert tags to lowercase if tags exist
tags_lower = [t.lower() for t in tags] if tags else []
for category, keywords in categories.items():
# Check both title and tags for keywords
if any(keyword in title_lower for keyword in keywords) or \
any(keyword in tag for keyword in keywords for tag in tags_lower):
return category
return 'Other'
# Add category to DataFrame
df['category'] = df.apply(lambda x: categorize_space(x['title'], x['tags']), axis=1)
# Show category distribution
category_counts = df['category'].value_counts()
print("\nCategory Distribution:")
print(category_counts)
# Show sample spaces from each category
print("\nSample spaces from each category:")
for category in categories.keys():
print(f"\n{category}:")
sample = df[df['category'] == category].head(3)
print(sample[['title', 'likes']].to_string())
# ------------------------------------------------------
# Add total likes per category
category_likes = df.groupby('category')['likes'].sum().sort_values(ascending=False)
print("Total likes per category:")
print(category_likes)
print("\nTop 10 spaces in each category (sorted by likes):")
for category in categories.keys():
print(f"\n=== {category} ===")
top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes']]
# Format output with padding for better readability
print(top_10.to_string(index=False))
# ------------------------------------------------------
# Add space URLs
df['url'] = 'https://huggingface.co/spaces/' + df['id']
# Show the top 10 spaces from each category with their links
# print("Top 10 spaces in each category with links:")
# for category in categories.keys():
# print(f"\n=== {category} ===")
# top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes', 'url']]
# Format output with padding for better readability
# print(top_5.to_string(index=False))
# ------------------------------------------------------
def search_spaces(search_text, category):
if category == "All Categories":
spaces_df = df
else:
spaces_df = df[df['category'] == category]
if search_text:
spaces_df = spaces_df[spaces_df['title'].str.lower().str.contains(search_text.lower())]
spaces = spaces_df.nlargest(30, 'likes')[['title', 'likes', 'url', 'category']]
# Get category stats
total_spaces = len(spaces_df)
total_likes = spaces_df['likes'].sum()
# Format the results as HTML with clickable links and stats
html_content = f"""
<div style='margin-bottom: 20px; padding: 10px; background-color: var(--color-background-primary);
border: 1px solid var(--color-border-primary); border-radius: 5px;'>
<h3 style='color: var(--color-text-primary);'>Statistics:</h3>
<p style='color: var(--color-text-primary);'>Total Spaces: {total_spaces}</p>
<p style='color: var(--color-text-primary);'>Total Likes: {total_likes:,}</p>
</div>
<div style='max-height: 800px; overflow-y: auto;'>
<div style='display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px; padding: 10px;'>
"""
for _, row in spaces.iterrows():
# In the search_spaces function, update the card HTML template:
html_content += f"""
<div style='padding: 15px;
border: 2px solid var(--color-border-primary);
border-radius: 5px;
background-color: var(--color-background-primary);
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
display: flex;
flex-direction: column;
height: 100%;
position: relative;'>
<h3 style='margin-top: 0; margin-bottom: 10px;'>
<a href='{row['url']}' target='_blank'
style='color: #2196F3;
text-decoration: none;
font-weight: bold;'>{row['title']}</a>
</h3>
<div style='height: 2px;
background: var(--color-border-primary);
margin: 10px 0;
width: 100%;'></div>
<p style='color: var(--color-text-primary); margin: 8px 0;'>
<span style='background-color: var(--color-accent-soft);
padding: 2px 8px;
border-radius: 12px;
font-size: 0.9em;'>
{row['category']}
</span>
</p>
<p style='color: var(--color-text-primary);
margin-top: auto;
padding-top: 10px;
border-top: 1px solid var(--color-border-primary);'>
❤️ {row['likes']:,} likes
</p>
</div>
"""
html_content += "</div></div>"
return html_content
# Create the Gradio interface
def create_app():
with gr.Blocks(
title="Hugging Face Spaces Explorer",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="blue",
)
) as app:
gr.Markdown("""
# 🤗 Hugging Face Spaces Explorer
Explore and discover popular Hugging Face Spaces by category.
Any currently uncategorized spaces will be listed under "Other" or "All Categories",
if you would like to help make Spaces easier to search and filter through feel free
to add on to my project or recommend additional filters!
""")
with gr.Row():
with gr.Column(scale=1):
# Category selection
category_dropdown = gr.Dropdown(
choices=["All Categories"] + sorted(df['category'].unique()),
label="Select Category",
value="All Categories"
)
# Search box
search_input = gr.Textbox(
label="Search Spaces",
placeholder="Enter search terms..."
)
# Display area for spaces
spaces_display = gr.HTML(value=search_spaces("", "All Categories"))
# Update display when category or search changes
category_dropdown.change(
fn=search_spaces,
inputs=[search_input, category_dropdown],
outputs=spaces_display
)
search_input.change(
fn=search_spaces,
inputs=[search_input, category_dropdown],
outputs=spaces_display
)
return app
# Launch the app
app = create_app()
app.launch(share=True)