File size: 15,005 Bytes
38f87b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import math
import os
from itertools import groupby
import numpy as np
from matplotlib import pyplot as plt, colors
from skimage.transform import resize

# todo different backend maybe diffrent files thata have partial
# todo depend on mode different min and max
from raven_utils.tools import is_num, il, image_type, lw, is_int, dict_from_list, if_images, download_file, \
    dir_decorator, list_dir

TRAIN = "train"
VAL = "val"
TEST = "test"
COLOR = "color"
SIZE = "size"
EXIST = "exist"
COR = "cor"
TARGET_SIZE = "target_size"


# https://github.com/qubvel/efficientnet/blob/master/efficientnet/preprocessing.py
MAP_INTERPOLATION_TO_ORDER = {
    "nearest": 0,
    "bilinear": 1,
    "biquadratic": 2,
    "bicubic": 3,
}


def center_crop_and_resize(image, image_size, crop_padding=32, interpolation="bicubic"):
    assert image.ndim in {2, 3}
    assert interpolation in MAP_INTERPOLATION_TO_ORDER.keys()

    h, w = image.shape[:2]

    padded_center_crop_size = int(
        (image_size / (image_size + crop_padding)) * min(h, w)
    )
    offset_height = ((h - padded_center_crop_size) + 1) // 2
    offset_width = ((w - padded_center_crop_size) + 1) // 2

    image_crop = image[
                 offset_height: padded_center_crop_size + offset_height,
                 offset_width: padded_center_crop_size + offset_width,
                 ]
    resized_image = resize(
        image_crop,
        (image_size, image_size),
        order=MAP_INTERPOLATION_TO_ORDER[interpolation],
        preserve_range=True,
    )

    return resized_image


def im_conv(image):
    return image.astype(np.float32) / 255.


def add_dim(x):
    return x[..., None]


def im_conv_black(image):
    return image[..., np.newaxis].astype(np.float32) / 255.


def im_resolve(image):
    return (image * 255).astype(np.uint8)


def minmax(data, axis=None, scale=1.0):
    return ((data - np.min(data, axis=axis)) / (np.max(data, axis=axis) - np.min(data, axis=axis))) * scale


def inverse(x):
    return 1.0 - x


def standarize(img, scaler=0.15, batch=True):
    indexes = tuple(range(1 if batch else 0, img.ndim))
    img = np.array(img)
    img -= np.mean(img, axis=indexes)[tuple([slice(None)] + [None] * len(indexes))]
    img /= np.std(img, axis=indexes)[tuple([slice(None)] + [None] * len(indexes))] + 1e-5
    img *= scaler
    return img


def image_standardization(img, scaler=0.15):
    indexes = tuple(range(1, 4))
    img -= np.mean(img, axis=indexes)
    img /= np.std(img, axis=indexes) + 1e-5
    img *= scaler
    return img


def clip_standardized(img, min=0, max=1):
    img += (max - min) / 2
    return np.clip(img, min, max)


def deprocess_image(img, clip=True):
    # Normalize array: center on 0., ensure variance is 0.15
    img = image_standardization(img)
    if clip:
        img = clip_standardized(img)
    return img


# def im_conv_tf(image,dtype=tf.float32):
#     return tf.image.convert_image_dtype(image,dtype)

# todo Grid on edges
# todo different channels
def draw_images(data, col=-1, row=-1, grid=True, border=None, mark=None, grid_args={}, border_kwargs={}, *args,
                **kwargs):
    figure, shape = create_grid(data, row=row, col=col, *args, **kwargs)
    if border is not None:
        add_border(figure, border, **border_kwargs)
    figure = create_image_from_grid(figure, *args, **kwargs)

    if grid:
        figure = add_grid(figure, shape[-3:], **grid_args)
    return figure


def draw_images2(data, col=-1, row=-1, grid=True, color=1, border=None, border_kwargs={}, *args,
                 **kwargs):
    figure, shape = create_grid(data, row=row, col=col, *args, **kwargs)
    if border is not None:
        add_border(figure, border, **border_kwargs)
    figure = fill_canvas(figure, color=color, grid=grid)
    return figure


def draw_images3(data, col=-1, row=-1, grid=True, border=None, mark=None, grid_args={}, border_kwargs={}, *args,
                 **kwargs):
    if len(np.asarray(data).shape) < 4:
        return data

    return draw_images(data=data,
                       col=col,
                       row=row,
                       grid=grid,
                       border=border,
                       mark=mark,
                       grid_args=grid_args,
                       border_kwargs=border_kwargs,
                       *args,
                       **kwargs
                       )


def fill_canvas(a, color=1, grid=10):
    if not isinstance(a, np.ndarray):
        a = np.asarray(a)
    if grid is True:
        grid = 10
    shape = a.shape
    move_r = shape[2] + grid
    move_c = shape[3] + grid
    if color is None:
        color = 0
    if is_num(color):
        color = np.full((move_r * shape[0], move_c * shape[1]) + shape[-1:], fill_value=color, dtype=a.dtype)
    for r in range(shape[0]):
        for c in range(shape[1]):
            color[move_r * r:move_r * r + shape[2], move_c * c:move_c * c + shape[3]] = a[r, c]
    return color


def create_grid(
        data,
        row=-1,
        col=-1,
        mode="auto",
        # Method for creating grid if row and col not set. Even evenly for row and cows. Shape take shape from input data. Auto use shape for input data that have more then 4 dimention, otherwise even.
        swap=False,  # swaping row and columns
        *args, **kwargs):
    if il(data):
        for i, d in enumerate(data):
            if len(d.shape) > 4:
                data[i] = draw_images(d)
            elif len(d.shape) < 3:
                data[i] = d[..., np.newaxis]
        shapes = [d.shape for d in data]
        # padding to make all images same size
        if not all_equal(shapes):
            mh = np.max([sh[-3] for sh in shapes])
            mw = np.max([sh[-2] for sh in shapes])
            canvas = np.zeros((len(data), mh, mw, shapes[0][-1]))
            for j, d in enumerate(data):
                canvas[j, :d.shape[-3], :d.shape[-2]] = d
            data = canvas
    data = np.asarray(data)
    shape = data.shape
    # check in case of no channels
    if shape[-1] > 4:
        data = data[..., np.newaxis]
        shape = data.shape
    if swap and len(shape) > 4:
        data = data.swapaxes(-4, -5)
    h = shape[-3]
    w = shape[-2]
    c = shape[-1]
    if len(shape) > 4:
        im_no = shape[-5] * shape[-4]
    elif len(shape) == 4:
        im_no = shape[-4]
    else:
        return data, shape
    if row == -1 and col == -1:
        if mode == "auto":
            mode = "shape" if len(shape) > 4 else "even"
        if mode == "shape":
            row = shape[-5] if len(shape) > 4 else shape[-4]
        elif mode == "even":
            row = math.ceil(np.sqrt(im_no))
        else:
            row = shape[-5] if len(shape) > 4 else math.ceil(np.sqrt(im_no))
    # eh = -1 if row == -1 else row * h
    # ew = -1 if column == -1 else column * w
    # if number of images is less then available slots in grid add blank images
    if row == -1:
        eh = -1
        m = im_no % col
        if m != 0:
            data = np.concatenate([data, np.zeros((col - m,) + shape[-3:])], axis=-4)
    else:
        eh = row * h
    if col == -1:
        ew = -1
        m = im_no % row
        if m != 0:
            data = np.concatenate([data, np.zeros((row - m,) + shape[-3:])], axis=-4)
    else:
        ew = col * h
    figure = data.reshape(row, col, h, w, c)
    import time
    time.sleep(0.1)
    return figure, shape


def create_image_from_grid(grid, *args, **kwargs):
    shape = grid.shape
    figure = grid.swapaxes(1, 2).reshape(shape[0] * shape[2], shape[1] * shape[3], shape[4])
    return figure


# todo For more dimention
def add_grid(figure, shape, left=True, right=True, color=1.00, hor=True, ver=True):
    revers = False
    if len(figure.shape) == 2:
        figure = figure[..., None]
        reverse = True
    if hor:
        figure[shape[0]::shape[0], :, :] = color
    if ver:
        figure[:, shape[1]::shape[1], :] = color
    if left:
        figure[0, :, :] = color
        figure[0, :] = color
    if right:
        figure[figure.shape[0] - 1, :, :] = color
        figure[:, ::figure.shape[1] - 1, :] = color
    if revers:
        figure = figure[..., 0]
    return figure


def add_border(figure, cor, exist=True, size=4, color="auto"):
    if color == "auto":
        info = image_type(figure)
        if info.mode == "RGB":
            color = np.array(colors.to_rgb("red")) * info.range_[1]
        else:
            color = info.range_[1]
        if info.reverse:
            color = info.range_[1] - color

    shape = figure.shape
    for c in lw(cor):
        if not isinstance(c, dict):
            c = dict_from_list([COR, EXIST, SIZE, COLOR], c)
        c = {
            **{
                EXIST: exist if il(exist) else [exist] * 4,
                SIZE: size,
                COLOR: color
            },
            **c
        }

        if is_int(lw(c[EXIST])[0]):
            c[EXIST] = K.mask(4, c[EXIST])
        if is_int(c[COR]):
            c[COR] = c[COR] // shape[1], c[COR] % shape[1]
            isinstance(lw(c[EXIST])[0], np.integer)

        cr = c[COR]
        if c[EXIST][0]:
            figure[cr[0], cr[1], 0:c[SIZE], :] = c[COLOR]
        if c[EXIST][1]:
            figure[cr[0], cr[1], :, shape[3] - c[SIZE]:shape[3]] = c[COLOR]
        if c[EXIST][2]:
            figure[cr[0], cr[1], shape[2] - c[SIZE]:shape[2], :] = c[COLOR]
        if c[EXIST][3]:
            figure[cr[0], cr[1], :, 0:c[SIZE]] = c[COLOR]
    return figure


# todo hgih tmp fix
def get_digitilizer(min=0, max=1, steps=10, mode="numpy"):
    bins = np.linspace(min, max, steps)
    bins = bins + (bins[1] - bins[0]) / 2
    # if mode == "tf":
    #     from tensorflow.ops import math_ops
    #     func = math_ops._bucketize
    #     bins = list(bins)
    # else:
    func = np.digitize

    def digitilizer(x):
        return func(x, bins)

    return digitilizer


def save_image_pil(path, data, *args, **kwargs):
    from PIL import Image
    if not isinstance(data, np.ndarray):
        data = np.array(data)
    if if_images(data):
        data = draw_images2(data, *args, **kwargs)
    if np.max(data) <= 1:
        data = im_resolve(data)
    if np.shape(data)[-1] == 1:
        data = data[..., 0]
    img = Image.fromarray(np.array(data, dtype="uint8"))
    # test if black or wihte
    if data.shape[-1] not in [3, 4]:
        img = img.convert('L')
    # todo maybe just check type for np.float
    if path is None:
        img.show()
    else:
        img.save(path)


def save_image_pil2(path, data, *args, **kwargs):
    from PIL import Image
    if np.max(data) <= 1:
        data = im_resolve(data)
    if len(np.shape(data)) == 3 and np.shape(data)[-1] == 1:
        data = data[..., 0]
    img = Image.fromarray(data)
    if len(data.shape) == 2 or (len(data.shape == 3) and data.shape[2] == 1):
        img = img.convert('L')
    # todo maybe just check type for np.float
    if path is None:
        img.show()
    else:
        img.save(path)


#
# https://towardsdatascience.com/how-to-create-a-gif-from-matplotlib-plots-in-python-6bec6c0c952c
# duration, fps, loop
def save_gif(path, data,sort_fn="first", *args, **kwargs):
    data = get_paths_(data, sort_fn=sort_fn)
    import imageio
    with imageio.get_writer(path, mode='I', *args, **kwargs) as writer:
        for filename in data:
            image = imageio.imread(filename)
            writer.append_data(image)


# https://stackoverflow.com/questions/44947505/how-to-make-a-movie-out-of-images-in-python
# https://docs.opencv.org/4.x/dd/d9e/classcv_1_1VideoWriter.html#ad59c61d8881ba2b2da22cff5487465b5
# https://github.com/ContinuumIO/anaconda-issues/issues/223
# https://softron.zendesk.com/hc/en-us/articles/207695697-List-of-FourCC-codes-for-video-codecs
def save_video(path, data, *args, fps=1, fourcc="MJPG",sort_fn="first", **kwargs):
    data = get_paths_(data, sort_fn=sort_fn)

    import cv2

    frame = cv2.imread(data[0])
    height, width, layers = frame.shape

    if isinstance(fourcc, str):
        fourcc = cv2.VideoWriter_fourcc(*fourcc)
    video = cv2.VideoWriter(path, fourcc, fps, (width, height))

    for image in data:
        video.write(cv2.imread(image))

    cv2.destroyAllWindows()
    video.release()


def get_paths_(data, sort_fn="first"):
    if isinstance(data, str):
        data = list_dir(data, sort_fn=sort_fn)
    return data


def add_text(ax, text, pos=None, star_x=25, start_y=25, row_size=30):
    text = lw(text)
    if pos is None:
        pos = [(star_x, start_y + i * row_size) for i in range(len(text))]
    pos = lw(pos)
    for i, t in enumerate(text):
        # draw.text(pos[i], t,fill="black")
        ax.text(pos[i][0], pos[i][1], t)


@dir_decorator
def save_image(path, data, description=None, size=None, dpi=None, *args, **kwargs):
    if not isinstance(data, np.ndarray):
        data = np.array(data)
    fig = plt.figure()
    if size is not None:
        fig.set_size_inches(size)
    # if title is not None:
    #     plt.title(title)
    ax = plt.Axes(fig, [0., 0., 1., 1.])
    ax.set_axis_off()
    fig.add_axes(ax)
    if len(data.shape) == 2 or data.shape[-1] == 1:
        # plt.set_cmap('Greys_r')
        plt.set_cmap('Greys')
    else:
        plt.set_cmap('hot')
    if if_images(data):
        data = draw_images(data, *args, **kwargs)
    ax.imshow(data, aspect='equal')
    if description is not None:
        add_text(ax, description, star_x=data.shape[1])

    params = {
        "fname": path,
        "bbox_inches": 'tight',
        "pad_inches": 0
    }
    if dpi is not None:
        params['dpi'] = dpi
    if path is None:
        plt.show()
    else:
        plt.savefig(**params)
    plt.clf()


SAMPLE_IMAGES = {
    "panda": "~/all/dataset/examples/panda.jpg",
    "cat": "~/all/dataset/examples/cat.jpg",
}


def load_image(path=None, dtype="uint8", *args, **kwargs):
    from tensorflow.keras.preprocessing import image
    if path is None:
        path = os.path.expanduser(SAMPLE_IMAGES["panda"])
        if not os.path.isfile(path):
            os.makedirs(os.path.dirname(path), exist_ok=True)
            download_file("https://upload.wikimedia.org/wikipedia/commons/f/fe/Giant_Panda_in_Beijing_Zoo_1.JPG", path)
        if not TARGET_SIZE in kwargs:
            kwargs[TARGET_SIZE] = (224, 224)
    elif path == "cat":
        path = os.path.expanduser(SAMPLE_IMAGES["cat"])
        kwargs[TARGET_SIZE] = (224, 224)

    img = image.load_img(path, *args, **kwargs)
    img = image.img_to_array(img, dtype=dtype)
    return img


def to_rgb(img, add_dim=True, check_dim=True):
    shape = np.shape(img)
    if add_dim and shape[-1] > 4:
        img = img[..., None]
    shape = np.shape(img)
    if check_dim and shape[-1] != 1:
        return img
    return np.tile(img, reps=(1, 1, 3))

# https://stackoverflow.com/questions/3844801/check-if-all-elements-in-a-list-are-identical
def all_equal(iterable, key=None):
    g = groupby(iterable, key=key)
    return next(g, True) and not next(g, False)