Spaces:
Build error
Build error
File size: 10,670 Bytes
e986ee1 38f87b5 e986ee1 575eae1 e986ee1 76b576d e986ee1 2526f4b e986ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from PIL import Image
#
import raven_utils.decode
from raven_utils.render.const import CENTER, DEFAULT_WIDTH, IMAGE_SIZE
from raven_utils.render_ import COLOR_VALUES, SIZE_VALUES, TYPE_VALUES, ANGLE_VALUES, RENDER_POSITIONS
def imshow(array):
image = Image.fromarray(array)
image.show()
def imsave(array, filepath):
image = Image.fromarray(array)
image.save(filepath)
def generate_matrix(array_list):
# row-major array_list
assert len(array_list) <= 9
img_grid = np.zeros((IMAGE_SIZE * 3, IMAGE_SIZE * 3), np.uint8)
for idx in range(len(array_list)):
i, j = divmod(idx, 3)
img_grid[i * IMAGE_SIZE:(i + 1) * IMAGE_SIZE, j * IMAGE_SIZE:(j + 1) * IMAGE_SIZE] = array_list[idx]
# draw grid
for x in [0.33, 0.67]:
img_grid[int(x * IMAGE_SIZE * 3) - 1:int(x * IMAGE_SIZE * 3) + 1, :] = 0
for y in [0.33, 0.67]:
img_grid[:, int(y * IMAGE_SIZE * 3) - 1:int(y * IMAGE_SIZE * 3) + 1] = 0
return img_grid
def generate_answers(array_list):
assert len(array_list) <= 8
img_grid = np.zeros((IMAGE_SIZE * 2, IMAGE_SIZE * 4), np.uint8)
for idx in range(len(array_list)):
i, j = divmod(idx, 4)
img_grid[i * IMAGE_SIZE:(i + 1) * IMAGE_SIZE, j * IMAGE_SIZE:(j + 1) * IMAGE_SIZE] = array_list[idx]
# draw grid
for x in [0.5]:
img_grid[int(x * IMAGE_SIZE * 2) - 1:int(x * IMAGE_SIZE * 2) + 1, :] = 0
for y in [0.25, 0.5, 0.75]:
img_grid[:, int(y * IMAGE_SIZE * 4) - 1:int(y * IMAGE_SIZE * 4) + 1] = 0
return img_grid
def generate_matrix_answer(array_list):
# row-major array_list
assert len(array_list) <= 18
img_grid = np.zeros((IMAGE_SIZE * 6, IMAGE_SIZE * 3), np.uint8)
for idx in range(len(array_list)):
i, j = divmod(idx, 3)
img_grid[i * IMAGE_SIZE:(i + 1) * IMAGE_SIZE, j * IMAGE_SIZE:(j + 1) * IMAGE_SIZE] = array_list[idx]
# draw grid
for x in [0.33, 0.67, 1.00, 1.33, 1.67]:
img_grid[int(x * IMAGE_SIZE * 3), :] = 0
for y in [0.33, 0.67]:
img_grid[:, int(y * IMAGE_SIZE * 3)] = 0
return img_grid
def merge_matrix_answer(matrix, answer):
matrix_image = generate_matrix(matrix)
answer_image = generate_answers(answer)
img_grid = np.ones((IMAGE_SIZE * 5 + 20, IMAGE_SIZE * 4), np.uint8) * 255
img_grid[:IMAGE_SIZE * 3, int(0.5 * IMAGE_SIZE):int(3.5 * IMAGE_SIZE)] = matrix_image
img_grid[-(IMAGE_SIZE * 2):, :] = answer_image
return img_grid
def render_panels(feature, target=True, angle=None):
# Decompose the panel into a structure and its entities
# root
# rv.decode_output(root)
# rv.decode_output_reshape(root)
# decoded =
# panel = decoded[0]
# hack due to different order for in_4_out_1
feature = np.concatenate(
[
feature[:, :74],
feature[:, 86:89],
feature[:, 77:86],
feature[:, 74:77],
feature[:, 89:]
],
axis=-1
)
panels = []
for group, exist, color, size, type_ in zip(*raven_utils.decode.decode_target_flat(feature)):
canvas = np.ones((IMAGE_SIZE, IMAGE_SIZE), np.uint8) * 255
structure_img = render_structure(group)
background = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
# note left components entities are in the lower layer
for i, entity in enumerate(exist):
if entity:
entity_img = render_entity(RENDER_POSITIONS[i], color[i], size[i], type_[i] + 1, angle=angle)
background = layer_add(background, entity_img)
background = layer_add(background, structure_img)
panels.append(canvas - background)
return np.stack(panels)
def render_structure(structure):
if structure == 5:
ret = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
ret[:, int(0.5 * IMAGE_SIZE)] = 255.0
elif structure == 6:
ret = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
ret[int(0.5 * IMAGE_SIZE), :] = 255.0
else:
ret = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
return ret
def render_entity(bbox, color, size, type_, angle=None):
color = COLOR_VALUES[color]
size = SIZE_VALUES[size]
type_ = TYPE_VALUES[type_]
if angle is None:
angle = np.random.randint(0, 7, 1)[0]
angle = ANGLE_VALUES[angle]
img = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
# planar position: [x, y, w, h]
# angular position: [x, y, w, h, x_c, y_c, omega]
# center: (columns, rows)
center = (int(bbox[1] * IMAGE_SIZE), int(bbox[0] * IMAGE_SIZE))
if type_ == "triangle":
unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
dl = int(unit * size)
pts = np.array([[center[0], center[1] - dl],
[center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0)],
[center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0)]],
np.int32)
pts = pts.reshape((-1, 1, 2))
color = 255 - color
width = DEFAULT_WIDTH
draw_triangle(img, pts, color, width)
elif type_ == "square":
unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
dl = int(unit / 2 * np.sqrt(2) * size)
pt1 = (center[0] - dl, center[1] - dl)
pt2 = (center[0] + dl, center[1] + dl)
color = 255 - color
width = DEFAULT_WIDTH
draw_square(img, pt1, pt2, color, width)
elif type_ == "pentagon":
unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
dl = int(unit * size)
pts = np.array([[center[0], center[1] - dl],
[center[0] - int(dl * np.cos(np.pi / 10)), center[1] - int(dl * np.sin(np.pi / 10))],
[center[0] - int(dl * np.sin(np.pi / 5)), center[1] + int(dl * np.cos(np.pi / 5))],
[center[0] + int(dl * np.sin(np.pi / 5)), center[1] + int(dl * np.cos(np.pi / 5))],
[center[0] + int(dl * np.cos(np.pi / 10)), center[1] - int(dl * np.sin(np.pi / 10))]],
np.int32)
pts = pts.reshape((-1, 1, 2))
color = 255 - color
width = DEFAULT_WIDTH
draw_pentagon(img, pts, color, width)
elif type_ == "hexagon":
unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
dl = int(unit * size)
pts = np.array([[center[0], center[1] - dl],
[center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] - int(dl / 2.0)],
[center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0)],
[center[0], center[1] + dl],
[center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0)],
[center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] - int(dl / 2.0)]],
np.int32)
pts = pts.reshape((-1, 1, 2))
color = 255 - color
width = DEFAULT_WIDTH
draw_hexagon(img, pts, color, width)
elif type_ == "circle":
# Minus because of the way we show the image. See: render_panel's return
color = 255 - color
unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
radius = int(unit * size)
width = DEFAULT_WIDTH
draw_circle(img, center, radius, color, width)
elif type_ == "none":
pass
# angular
if len(bbox) > 4:
# [x, y, w, h, x_c, y_c, omega]
angle = bbox[6]
center = (int(bbox[5] * IMAGE_SIZE), int(bbox[4] * IMAGE_SIZE))
img = rotate(img, angle, center=center)
# planar
else:
img = rotate(img, angle, center=center)
# img = shift(img, *entity_position)
return img
def shift(img, dx, dy):
M = np.array([[1, 0, dx], [0, 1, dy]], np.float32)
img = cv2.warpAffine(img, M, (IMAGE_SIZE, IMAGE_SIZE), flags=cv2.INTER_LINEAR)
return img
def rotate(img, angle, center=CENTER):
M = cv2.getRotationMatrix2D(center, angle, 1)
img = cv2.warpAffine(img, M, (IMAGE_SIZE, IMAGE_SIZE), flags=cv2.INTER_LINEAR)
return img
def scale(img, tx, ty, center=CENTER):
M = np.array([[tx, 0, center[0] * (1 - tx)], [0, ty, center[1] * (1 - ty)]], np.float32)
img = cv2.warpAffine(img, M, (IMAGE_SIZE, IMAGE_SIZE), flags=cv2.INTER_LINEAR)
return img
def layer_add(lower_layer_np, higher_layer_np):
# higher_layer_np is superimposed on lower_layer_np
# new_np = lower_layer_np.copy()
# lower_layer_np is modified
lower_layer_np[higher_layer_np > 0] = 0
return lower_layer_np + higher_layer_np
# Draw primitives
def draw_triangle(img, pts, color, width):
# if filled
if color != 0:
# fill the interior
cv2.fillConvexPoly(img, pts, color)
# draw the edge
cv2.polylines(img, [pts], True, 255, width)
# if not filled
else:
cv2.polylines(img, [pts], True, 255, width)
def draw_square(img, pt1, pt2, color, width):
# if filled
if color != 0:
# fill the interior
cv2.rectangle(img,
pt1,
pt2,
color,
-1)
# draw the edge
cv2.rectangle(img,
pt1,
pt2,
255,
width)
# if not filled
else:
cv2.rectangle(img,
pt1,
pt2,
255,
width)
def draw_pentagon(img, pts, color, width):
# if filled
if color != 0:
# fill the interior
cv2.fillConvexPoly(img, pts, color)
# draw the edge
cv2.polylines(img, [pts], True, 255, width)
# if not filled
else:
cv2.polylines(img, [pts], True, 255, width)
def draw_hexagon(img, pts, color, width):
# if filled
if color != 0:
# fill the interior
cv2.fillConvexPoly(img, pts, color)
# draw the edge
cv2.polylines(img, [pts], True, 255, width)
# if not filled
else:
cv2.polylines(img, [pts], True, 255, width)
def draw_circle(img, center, radius, color, width):
# if filled
if color != 0:
# fill the interior
cv2.circle(img,
center,
radius,
color,
-1)
# draw the edge
cv2.circle(img,
center,
radius,
255,
width)
# if not filled
else:
cv2.circle(img,
center,
radius,
255,
width)
|