File size: 10,670 Bytes
e986ee1
 
 
 
 
 
 
38f87b5
e986ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575eae1
e986ee1
 
 
 
 
 
76b576d
 
 
 
 
 
 
 
 
 
 
 
 
e986ee1
2526f4b
e986ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# -*- coding: utf-8 -*-


import cv2
import numpy as np
from PIL import Image
#

import raven_utils.decode
from raven_utils.render.const import CENTER, DEFAULT_WIDTH, IMAGE_SIZE

from raven_utils.render_ import COLOR_VALUES, SIZE_VALUES, TYPE_VALUES, ANGLE_VALUES, RENDER_POSITIONS


def imshow(array):
    image = Image.fromarray(array)
    image.show()


def imsave(array, filepath):
    image = Image.fromarray(array)
    image.save(filepath)


def generate_matrix(array_list):
    # row-major array_list
    assert len(array_list) <= 9
    img_grid = np.zeros((IMAGE_SIZE * 3, IMAGE_SIZE * 3), np.uint8)
    for idx in range(len(array_list)):
        i, j = divmod(idx, 3)
        img_grid[i * IMAGE_SIZE:(i + 1) * IMAGE_SIZE, j * IMAGE_SIZE:(j + 1) * IMAGE_SIZE] = array_list[idx]
    # draw grid
    for x in [0.33, 0.67]:
        img_grid[int(x * IMAGE_SIZE * 3) - 1:int(x * IMAGE_SIZE * 3) + 1, :] = 0
    for y in [0.33, 0.67]:
        img_grid[:, int(y * IMAGE_SIZE * 3) - 1:int(y * IMAGE_SIZE * 3) + 1] = 0
    return img_grid


def generate_answers(array_list):
    assert len(array_list) <= 8
    img_grid = np.zeros((IMAGE_SIZE * 2, IMAGE_SIZE * 4), np.uint8)
    for idx in range(len(array_list)):
        i, j = divmod(idx, 4)
        img_grid[i * IMAGE_SIZE:(i + 1) * IMAGE_SIZE, j * IMAGE_SIZE:(j + 1) * IMAGE_SIZE] = array_list[idx]
    # draw grid
    for x in [0.5]:
        img_grid[int(x * IMAGE_SIZE * 2) - 1:int(x * IMAGE_SIZE * 2) + 1, :] = 0
    for y in [0.25, 0.5, 0.75]:
        img_grid[:, int(y * IMAGE_SIZE * 4) - 1:int(y * IMAGE_SIZE * 4) + 1] = 0
    return img_grid


def generate_matrix_answer(array_list):
    # row-major array_list
    assert len(array_list) <= 18
    img_grid = np.zeros((IMAGE_SIZE * 6, IMAGE_SIZE * 3), np.uint8)
    for idx in range(len(array_list)):
        i, j = divmod(idx, 3)
        img_grid[i * IMAGE_SIZE:(i + 1) * IMAGE_SIZE, j * IMAGE_SIZE:(j + 1) * IMAGE_SIZE] = array_list[idx]
    # draw grid
    for x in [0.33, 0.67, 1.00, 1.33, 1.67]:
        img_grid[int(x * IMAGE_SIZE * 3), :] = 0
    for y in [0.33, 0.67]:
        img_grid[:, int(y * IMAGE_SIZE * 3)] = 0
    return img_grid


def merge_matrix_answer(matrix, answer):
    matrix_image = generate_matrix(matrix)
    answer_image = generate_answers(answer)
    img_grid = np.ones((IMAGE_SIZE * 5 + 20, IMAGE_SIZE * 4), np.uint8) * 255
    img_grid[:IMAGE_SIZE * 3, int(0.5 * IMAGE_SIZE):int(3.5 * IMAGE_SIZE)] = matrix_image
    img_grid[-(IMAGE_SIZE * 2):, :] = answer_image
    return img_grid


def render_panels(feature, target=True, angle=None):
    # Decompose the panel into a structure and its entities
    # root
    # rv.decode_output(root)
    # rv.decode_output_reshape(root)
    # decoded =
    # panel = decoded[0]

    # hack due to different order for in_4_out_1
    feature = np.concatenate(
        [
            feature[:, :74],
            feature[:, 86:89],
            feature[:, 77:86],
            feature[:, 74:77],
            feature[:, 89:]
        ],
        axis=-1
    )

    panels = []
    for group, exist, color, size, type_ in zip(*raven_utils.decode.decode_target_flat(feature)):
        canvas = np.ones((IMAGE_SIZE, IMAGE_SIZE), np.uint8) * 255
        structure_img = render_structure(group)
        background = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
        # note left components entities are in the lower layer
        for i, entity in enumerate(exist):
            if entity:
                entity_img = render_entity(RENDER_POSITIONS[i], color[i], size[i], type_[i] + 1, angle=angle)
                background = layer_add(background, entity_img)
        background = layer_add(background, structure_img)
        panels.append(canvas - background)
    return np.stack(panels)


def render_structure(structure):
    if structure == 5:
        ret = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
        ret[:, int(0.5 * IMAGE_SIZE)] = 255.0
    elif structure == 6:
        ret = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
        ret[int(0.5 * IMAGE_SIZE), :] = 255.0
    else:
        ret = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
    return ret


def render_entity(bbox, color, size, type_, angle=None):
    color = COLOR_VALUES[color]
    size = SIZE_VALUES[size]
    type_ = TYPE_VALUES[type_]
    if angle is None:
        angle = np.random.randint(0, 7, 1)[0]
    angle = ANGLE_VALUES[angle]
    img = np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)

    # planar position: [x, y, w, h]
    # angular position: [x, y, w, h, x_c, y_c, omega]
    # center: (columns, rows)
    center = (int(bbox[1] * IMAGE_SIZE), int(bbox[0] * IMAGE_SIZE))
    if type_ == "triangle":
        unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
        dl = int(unit * size)
        pts = np.array([[center[0], center[1] - dl],
                        [center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0)],
                        [center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0)]],
                       np.int32)
        pts = pts.reshape((-1, 1, 2))
        color = 255 - color
        width = DEFAULT_WIDTH
        draw_triangle(img, pts, color, width)
    elif type_ == "square":
        unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
        dl = int(unit / 2 * np.sqrt(2) * size)
        pt1 = (center[0] - dl, center[1] - dl)
        pt2 = (center[0] + dl, center[1] + dl)
        color = 255 - color
        width = DEFAULT_WIDTH
        draw_square(img, pt1, pt2, color, width)
    elif type_ == "pentagon":
        unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
        dl = int(unit * size)
        pts = np.array([[center[0], center[1] - dl],
                        [center[0] - int(dl * np.cos(np.pi / 10)), center[1] - int(dl * np.sin(np.pi / 10))],
                        [center[0] - int(dl * np.sin(np.pi / 5)), center[1] + int(dl * np.cos(np.pi / 5))],
                        [center[0] + int(dl * np.sin(np.pi / 5)), center[1] + int(dl * np.cos(np.pi / 5))],
                        [center[0] + int(dl * np.cos(np.pi / 10)), center[1] - int(dl * np.sin(np.pi / 10))]],
                       np.int32)
        pts = pts.reshape((-1, 1, 2))
        color = 255 - color
        width = DEFAULT_WIDTH
        draw_pentagon(img, pts, color, width)
    elif type_ == "hexagon":
        unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
        dl = int(unit * size)
        pts = np.array([[center[0], center[1] - dl],
                        [center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] - int(dl / 2.0)],
                        [center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0)],
                        [center[0], center[1] + dl],
                        [center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0)],
                        [center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] - int(dl / 2.0)]],
                       np.int32)
        pts = pts.reshape((-1, 1, 2))
        color = 255 - color
        width = DEFAULT_WIDTH
        draw_hexagon(img, pts, color, width)
    elif type_ == "circle":
        # Minus because of the way we show the image. See: render_panel's return
        color = 255 - color
        unit = min(bbox[2], bbox[3]) * IMAGE_SIZE / 2
        radius = int(unit * size)
        width = DEFAULT_WIDTH
        draw_circle(img, center, radius, color, width)
    elif type_ == "none":
        pass
    # angular
    if len(bbox) > 4:
        # [x, y, w, h, x_c, y_c, omega]
        angle = bbox[6]
        center = (int(bbox[5] * IMAGE_SIZE), int(bbox[4] * IMAGE_SIZE))
        img = rotate(img, angle, center=center)
    # planar 
    else:
        img = rotate(img, angle, center=center)
    # img = shift(img, *entity_position)

    return img


def shift(img, dx, dy):
    M = np.array([[1, 0, dx], [0, 1, dy]], np.float32)
    img = cv2.warpAffine(img, M, (IMAGE_SIZE, IMAGE_SIZE), flags=cv2.INTER_LINEAR)
    return img


def rotate(img, angle, center=CENTER):
    M = cv2.getRotationMatrix2D(center, angle, 1)
    img = cv2.warpAffine(img, M, (IMAGE_SIZE, IMAGE_SIZE), flags=cv2.INTER_LINEAR)
    return img


def scale(img, tx, ty, center=CENTER):
    M = np.array([[tx, 0, center[0] * (1 - tx)], [0, ty, center[1] * (1 - ty)]], np.float32)
    img = cv2.warpAffine(img, M, (IMAGE_SIZE, IMAGE_SIZE), flags=cv2.INTER_LINEAR)
    return img


def layer_add(lower_layer_np, higher_layer_np):
    # higher_layer_np is superimposed on lower_layer_np
    # new_np = lower_layer_np.copy()
    # lower_layer_np is modified
    lower_layer_np[higher_layer_np > 0] = 0
    return lower_layer_np + higher_layer_np


# Draw primitives
def draw_triangle(img, pts, color, width):
    # if filled
    if color != 0:
        # fill the interior
        cv2.fillConvexPoly(img, pts, color)
        # draw the edge
        cv2.polylines(img, [pts], True, 255, width)
    # if not filled
    else:
        cv2.polylines(img, [pts], True, 255, width)


def draw_square(img, pt1, pt2, color, width):
    # if filled
    if color != 0:
        # fill the interior
        cv2.rectangle(img,
                      pt1,
                      pt2,
                      color,
                      -1)
        # draw the edge
        cv2.rectangle(img,
                      pt1,
                      pt2,
                      255,
                      width)
    # if not filled
    else:
        cv2.rectangle(img,
                      pt1,
                      pt2,
                      255,
                      width)


def draw_pentagon(img, pts, color, width):
    # if filled
    if color != 0:
        # fill the interior
        cv2.fillConvexPoly(img, pts, color)
        # draw the edge
        cv2.polylines(img, [pts], True, 255, width)
    # if not filled
    else:
        cv2.polylines(img, [pts], True, 255, width)


def draw_hexagon(img, pts, color, width):
    # if filled
    if color != 0:
        # fill the interior
        cv2.fillConvexPoly(img, pts, color)
        # draw the edge
        cv2.polylines(img, [pts], True, 255, width)
    # if not filled
    else:
        cv2.polylines(img, [pts], True, 255, width)


def draw_circle(img, center, radius, color, width):
    # if filled
    if color != 0:
        # fill the interior
        cv2.circle(img,
                   center,
                   radius,
                   color,
                   -1)
        # draw the edge
        cv2.circle(img,
                   center,
                   radius,
                   255,
                   width)
    # if not filled
    else:
        cv2.circle(img,
                   center,
                   radius,
                   255,
                   width)