raven / utils.py
Jakub Kwiatkowski
fix: Variable name.
fadd4cc
import numpy as np
from funcy import identity
import raven_utils as rv
from raven_utils.constant import PROPERTY
from raven_utils.decode import target_mask
from raven_utils.image import draw_images
from raven_utils.render.rendering import render_panels
from raven_utils.tools import filter_keys, is_model, il
from raven_utils.uitls import get_matrix
from tensorflow.keras.models import load_model
from raven_utils.draw import render_from_model
import models
import ast
def render_from_model(data,predict,pre_fn=identity):
data = filter_keys(data, PROPERTY, reverse=True)
if is_model(predict) or str(type(predict)) == "<class 'tensorflow.python.saved_model.load.Loader._recreate_base_user_object.<locals>._UserObject'>":
predict = predict(data)
pro = np.array(target_mask(predict['predict_mask'].numpy()) * predict["predict"].numpy(), dtype=np.int8)
return pre_fn(render_panels(pro, target=False)[None])[0]
def load_example(index=0):
index = ast.literal_eval(str(index))
if il(index):
example = rv.draw.render_panels(np.array(index))
desc = "Custom matrix"
else:
if not index:
index = 0
index = int(index)
desc = models.properties[index]['Description']
example = get_matrix(
np.array(models.data[index:index + 1]['inputs'], dtype="uint8"),
np.array(models.data[index:index + 1]['index'], dtype="uint8")[..., None]
)
result = np.tile(draw_images(example[:9], row=3), reps=(1, 1, 3))
return result, desc
def load_model_(name):
if name == "Transformer":
path = "/home/jkwiatkowski/all/best/rav/full_trans/6e8e6bad403e4171ad10daa1a518ba09"
else:
path = name
models.model = load_model(path)
return f"Success loading: {name}"
def run_nn(index=0):
index = ast.literal_eval(str(index))
if il(index):
data = rv.draw.render_panels(np.array(index))
data = np.concatenate([data, data[:7]])[None]
else:
if not index:
index = models.START_IMAGE
index = int(index)
data = models.data[index:index + 1]['inputs']
# model = load_model("/home/jkwiatkowski/all/best/rav/full_trans/6e8e6bad403e4171ad10daa1a518ba09")
# data = {
# 'inputs': data,
# 'index': np.zeros(shape=(1, 1), dtype="uint8"),
# 'target': np.zeros(shape=(1, 16, 113), dtype="int8"),
# }
data = {
'inputs': np.asarray(data, dtype="uint8"),
'index': np.zeros(shape=(1, 1), dtype="uint8"),
'target': np.zeros(shape=(1, 16, 113), dtype="int8"),
}
res = np.tile(render_from_model(data, models.model)[0, ..., None], reps=(1, 1, 3))
# res = model({'inputs': data[0:1]})
return res
def next_(index=0):
index = ast.literal_eval(str(index))
if not isinstance(index, int):
index = models.START_IMAGE
index = int(index) + 1
return (index,) + load_example(index)
def prev_(index=0):
index = ast.literal_eval(str(index))
if not isinstance(index, int):
index = models.START_IMAGE
index = int(index) - 1
return (index,) + load_example(index)
if __name__ == '__main__':
image, _ = load_example(5)
run_nn(image)