Spaces:
Sleeping
Sleeping
Jan van Doorn
commited on
Commit
·
ab2b897
1
Parent(s):
bffc737
commit
Browse files
app.py
CHANGED
@@ -1,10 +1,13 @@
|
|
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
|
5 |
-
|
|
|
6 |
bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h')
|
7 |
|
|
|
8 |
def transcribe(audio_mic, audio_file):
|
9 |
if audio_file is not None:
|
10 |
return whisper(audio_file)['text']
|
@@ -13,6 +16,7 @@ def transcribe(audio_mic, audio_file):
|
|
13 |
else:
|
14 |
return 'There was no audio to transcribe...'
|
15 |
|
|
|
16 |
def extractCallSignCommand(transcription):
|
17 |
if type(transcription) is str:
|
18 |
result = bert_atco_ner(transcription)
|
@@ -31,6 +35,7 @@ def extractCallSignCommand(transcription):
|
|
31 |
else:
|
32 |
return 'There was no transcription to extract a callsign or command from...'
|
33 |
|
|
|
34 |
def transcribeAndExtract(audio_mic, audio_file, transcribe_only):
|
35 |
transcription = transcribe(audio_mic, audio_file)
|
36 |
if not transcribe_only:
|
@@ -39,12 +44,14 @@ def transcribeAndExtract(audio_mic, audio_file, transcribe_only):
|
|
39 |
callSignCommandValues = ''
|
40 |
return transcription, callSignCommandValues
|
41 |
|
|
|
42 |
iface = gr.Interface(
|
43 |
fn=transcribeAndExtract,
|
44 |
inputs=[gr.Audio(source='microphone', type='filepath'), gr.Audio(source='upload', type='filepath'), gr.Checkbox(label='Transcribe only', default=False)],
|
45 |
outputs=[gr.Text(label='Transcription'), gr.Text(label='Callsigns, commands and values')],
|
46 |
title='Whisper Large v2 - ATCO2-ASR-ATCOSIM',
|
47 |
-
description='Whisper Large v2 model fine-tuned on the ATCO2
|
48 |
)
|
49 |
|
|
|
50 |
iface.launch()
|
|
|
1 |
+
#%%
|
2 |
from transformers import pipeline
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
|
6 |
+
#%%
|
7 |
+
whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim', token=os.environ['HUGGINGFACE_TOKEN'])
|
8 |
bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h')
|
9 |
|
10 |
+
#%%
|
11 |
def transcribe(audio_mic, audio_file):
|
12 |
if audio_file is not None:
|
13 |
return whisper(audio_file)['text']
|
|
|
16 |
else:
|
17 |
return 'There was no audio to transcribe...'
|
18 |
|
19 |
+
#%%
|
20 |
def extractCallSignCommand(transcription):
|
21 |
if type(transcription) is str:
|
22 |
result = bert_atco_ner(transcription)
|
|
|
35 |
else:
|
36 |
return 'There was no transcription to extract a callsign or command from...'
|
37 |
|
38 |
+
#%%
|
39 |
def transcribeAndExtract(audio_mic, audio_file, transcribe_only):
|
40 |
transcription = transcribe(audio_mic, audio_file)
|
41 |
if not transcribe_only:
|
|
|
44 |
callSignCommandValues = ''
|
45 |
return transcription, callSignCommandValues
|
46 |
|
47 |
+
#%%
|
48 |
iface = gr.Interface(
|
49 |
fn=transcribeAndExtract,
|
50 |
inputs=[gr.Audio(source='microphone', type='filepath'), gr.Audio(source='upload', type='filepath'), gr.Checkbox(label='Transcribe only', default=False)],
|
51 |
outputs=[gr.Text(label='Transcription'), gr.Text(label='Callsigns, commands and values')],
|
52 |
title='Whisper Large v2 - ATCO2-ASR-ATCOSIM',
|
53 |
+
description='This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.',
|
54 |
)
|
55 |
|
56 |
+
#%%
|
57 |
iface.launch()
|