Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
class ResNet18(nn.Module): | |
def __init__(self, in_channels: int, num_classes: int): | |
super().__init__() | |
self.initial_conv = nn.Conv2d(in_channels=in_channels, | |
out_channels=32, | |
kernel_size=5, | |
stride=1, | |
padding=2, | |
bias=False) | |
self.bn = nn.BatchNorm2d(32) | |
self.relu = nn.ReLU(inplace=True) | |
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = nn.Sequential( | |
BasicBlock(32, 32), | |
BasicBlock(32, 32) | |
) | |
self.layer2 = nn.Sequential( | |
BasicBlock(32, 64, stride=2, downsample=self._downsample(32, 64)), | |
BasicBlock(64, 64) | |
) | |
self.layer3 = nn.Sequential( | |
BasicBlock(64, 128, stride=2, downsample=self._downsample(64, 128)), | |
BasicBlock(128, 128) | |
) | |
self.layer4 = nn.Sequential( | |
BasicBlock(128, 256, stride=2, downsample=self._downsample(128, 256)), | |
BasicBlock(256, 256) | |
) | |
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.drop = nn.Dropout(0.15) | |
self.flatten = nn.Flatten(1) | |
self.fc = nn.Linear(256, num_classes) | |
def _downsample(in_channels: int, out_channels: int) -> nn.Sequential: | |
return nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2, bias=False), | |
nn.BatchNorm2d(out_channels) | |
) | |
def forward(self, x): | |
x = self.initial_conv(x) | |
x = self.bn(x) | |
x = self.relu(x) | |
x = self.max_pool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avg_pool(x) | |
x = self.drop(x) | |
x = self.flatten(x) | |
x = self.fc(x) | |
return x | |
class BasicBlock(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None): | |
super().__init__() | |
self.downsample = downsample | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(out_channels) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
identity = x | |
output = self.conv1(x) | |
output = self.bn1(output) | |
output = self.relu(output) | |
output = self.conv2(output) | |
output = self.bn2(output) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
output += identity | |
output = self.relu(output) | |
return output | |