import torch from torch import nn class ResNet18(nn.Module): def __init__(self, in_channels: int, num_classes: int): super().__init__() self.initial_conv = nn.Conv2d( in_channels=in_channels, out_channels=64, kernel_size=7, stride=2, padding=3, bias=False, ) self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = nn.Sequential(BasicBlock(64, 64), BasicBlock(64, 64)) self.layer2 = nn.Sequential( BasicBlock(64, 128, stride=2, downsample=self._downsample(64, 128)), BasicBlock(128, 128), ) self.layer3 = nn.Sequential( BasicBlock(128, 256, stride=2, downsample=self._downsample(128, 256)), BasicBlock(256, 256), ) self.layer4 = nn.Sequential( BasicBlock(256, 512, stride=2, downsample=self._downsample(256, 512)), BasicBlock(512, 512), ) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.drop = nn.Dropout(0.15) self.flatten = nn.Flatten(1) self.fc = nn.Linear(512, num_classes) @staticmethod def _downsample(in_channels: int, out_channels: int) -> nn.Sequential: return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2, bias=False), nn.BatchNorm2d(out_channels), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.initial_conv(x) x = self.bn(x) x = self.relu(x) x = self.max_pool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avg_pool(x) x = self.drop(x) # because linear layers tends to overfit more x = self.flatten(x) x = self.fc(x) return x class BasicBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None, ): super().__init__() self.downsample = downsample self.conv1 = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False, ) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(out_channels) def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x output = self.conv1(x) output = self.bn1(output) output = self.relu(output) output = self.conv2(output) output = self.bn2(output) if self.downsample is not None: identity = self.downsample(x) output += identity output = self.relu(output) return output