File size: 11,482 Bytes
b066d77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
from pathlib import Path
import cv2
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import imagehash
from typing import Callable
from datetime import datetime as dt
from abc import ABC, abstractmethod

_DATASET_AVG_MEAN = 129.38489987766278
_DATASET_AVG_STD = 54.084109207654805


def save_to_file(location: str = './extracted_paths.txt') -> Callable:
    def outer_wrapper(fn: Callable) -> Callable:
        def inner_wrapper(*args, **kwargs):
            paths: list[str] = fn(*args, **kwargs)
            if kwargs.get('to_file'):
                with open(location, 'a') as file:
                    file.write('\nFiles to remove [TIMESTAMP {}]:\n'.format(dt.now().strftime('%Y%m%d%H%M%S')))
                    for p in paths:
                        file.write(f'{p}\n')
            return paths
        return inner_wrapper
    return outer_wrapper


def visualize(show_limit: int = -1) -> Callable:
    def outer_wrapper(fn: Callable) -> Callable:
        def inner_wrapper(*args, **kwargs):
            paths: list[str] = fn(*args, **kwargs)
            if kwargs.get('visualize_'):
                if show_limit != -1:
                    paths = paths[:show_limit]

                num_cols = 8
                num_rows = len(paths) // num_cols + 1

                fig = plt.figure(figsize=(8, 8))
                for i, path in enumerate(paths, start=1):
                    plt.subplot(num_rows, num_cols, i)
                    plt.imshow(Image.open(path), cmap='gray')
                    plt.title(f'{Path(path).parent.name}', fontsize=7)
                    plt.axis('off')
                fig.tight_layout()
                plt.tight_layout()
                fig.subplots_adjust(hspace=0.6, top=0.97)
                plt.show()
            return paths
        return inner_wrapper
    return outer_wrapper


class DataFilter(ABC):
    def __init__(self):
        self.paths = []

    @abstractmethod
    def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
        pass

    @abstractmethod
    def clear(self) -> None:
        pass

    @abstractmethod
    def filter(self) -> bool:
        pass

    @staticmethod
    def _load_data(dir_: str) -> tuple[list[np.ndarray], list[str], list[str]]:
        images = []
        class_names = []
        paths = []

        for path in Path(dir_).glob('**/*.jpg'):
            label = path.parent.name
            image = cv2.imread(str(path), cv2.IMREAD_GRAYSCALE)
            if image is not None and label is not None:
                images.append(np.array(image))
                class_names.append(label)
                paths.append(str(path))

        return images, class_names, paths


class DataFilterCompose(DataFilter):
    def __init__(self, components: list[DataFilter]):
        super().__init__()
        self.components = components

    @staticmethod
    def build(components: list[DataFilter]) -> DataFilter:
        return DataFilterCompose(components)

    def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
        extracted_paths = []
        for component in self.components:
            cur_extracted_paths = component.extract(data_dir,
                                                    visualize_=visualize_,
                                                    to_file=to_file)
            extracted_paths += cur_extracted_paths
        self.paths += extracted_paths
        return extracted_paths

    def clear(self) -> None:
        for component in self.components:
            component.clear()

    def filter(self):
        for component in self.components:
            component.filter()

    def add_component(self, component: DataFilter, position: int) -> None:
        self.components.insert(position, component)

    def rm_component(self, position: int) -> None:
        self.components.pop(position)


class StatsDataFilter(DataFilter):
    _OPTIM_MEAN_THRESH = 107
    _OPTIM_STD_THRESH = 51

    def __init__(self, data_avg_mean: float = None, data_avg_std: float = None, console_output: bool = False):
        super().__init__()
        self.data_avg_mean = data_avg_mean
        self.data_avg_std = data_avg_std
        self.console_output = console_output

    @visualize()
    @save_to_file()
    def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
        if self.data_avg_mean is None or self.data_avg_std is None:
            stats = self._compute_dataset_stats(data_dir)
            self.data_avg_mean = stats['avg_mean']
            self.data_avg_std = stats['avg_std']

        extracted_paths = self._extract_outliers_by_stats(
            data_dir,
            self.data_avg_mean,
            self.data_avg_std,
            StatsDataFilter._OPTIM_MEAN_THRESH,
            StatsDataFilter._OPTIM_STD_THRESH,
            self.console_output)

        self.paths += extracted_paths
        return extracted_paths

    def clear(self) -> None:
        self.paths.clear()
        if self.console_output:
            print(f'[{self.__class__.__name__}]: Paths memory cleared.')

    def filter(self) -> bool:
        has_error = False
        for path in self.paths:
            if not Path(path).exists():
                has_error = True
                continue
            os.remove(path)
            if self.console_output:
                print(f'[{self.__class__.__name__}]: Removed {path}')
        return has_error

    @classmethod
    def _extract_outliers_by_stats(cls,
                                   data_root: str | Path,
                                   dataset_avg_mean: float,
                                   dataset_avg_std: float,
                                   mean_thresh: float,
                                   std_thresh: float,
                                   console_output: bool = False) -> list[str]:
        outlier_paths = []
        count = 0
        _, _, paths = StatsDataFilter._load_data(data_root)
        total_len = len(paths)
        for path in iter(paths):
            img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
            if abs(dataset_avg_mean - np.mean(img)) > mean_thresh or abs(
                    dataset_avg_std - np.std(img)) > std_thresh:
                outlier_paths.append(path)
            if console_output:
                count += 1
                print(f'[{cls.__name__}]: Computed {count}/{total_len} images ({count / total_len * 100:.2f}%)')
        return outlier_paths

    @staticmethod
    def _compute_dataset_stats(data_dir: str) -> dict[str, float]:
        img_paths = list(Path(data_dir).glob('**/*.jpg'))
        num_images = len(img_paths)
        mean_sum = 0
        std_sum = 0

        for img_path in img_paths:
            img = cv2.imread(str(img_path), cv2.IMREAD_GRAYSCALE)
            img_mean = np.mean(img)
            img_std = np.std(img)
            mean_sum += img_mean
            std_sum += img_std

        avg_mean = mean_sum / num_images
        avg_std = std_sum / num_images
        stats_dict = {
            'avg_mean': avg_mean,
            'avg_std': avg_std,
        }
        return stats_dict


class PcaDataFilter(DataFilter):
    _OPTIM_NUM_COMPONENTS = 4
    _OPTIM_ERROR_THRESH = 87

    def __init__(self, console_output: bool = False):
        super().__init__()
        self.console_output = console_output

    @visualize()
    @save_to_file()
    def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
        extracted_paths = self._extract_outliers_with_pca(data_dir)
        self.paths += extracted_paths
        return extracted_paths

    def clear(self) -> None:
        self.paths.clear()
        if self.console_output:
            print(f'[{self.__class__.__name__}]: Paths memory cleared.')

    def filter(self) -> bool:
        has_error = False
        for path in self.paths:
            if not Path(path).exists():
                has_error = True
                continue
            os.remove(path)
            if self.console_output:
                print(f'[{self.__class__.__name__}]: Removed {path}')
        return has_error

    @staticmethod
    def _extract_outliers_with_pca(dir_: str | Path) -> list[str]:
        x, _, img_paths = PcaDataFilter._load_data(dir_)
        x = np.array(x)
        num_samples, height, width = x.shape
        X_flattened = x.reshape(num_samples, height * width)

        outlier_indices = PcaDataFilter._detect_outliers_with_pca(X_flattened,
                                                                  PcaDataFilter._OPTIM_NUM_COMPONENTS,
                                                                  PcaDataFilter._OPTIM_ERROR_THRESH)
        img_paths_to_remove = [img_paths[i] for i in outlier_indices.tolist()]
        return img_paths_to_remove

    @staticmethod
    def _detect_outliers_with_pca(orig_data: np.ndarray,
                                  num_components: int,
                                  error_thresh: float) -> np.ndarray:
        pca = PCA(n_components=num_components)
        X_reduced = pca.fit_transform(orig_data)

        X_reconstructed = pca.inverse_transform(X_reduced)
        reconstruction_errors = np.sqrt(np.mean((orig_data - X_reconstructed) ** 2, axis=1))

        outlier_indices = np.where(reconstruction_errors > error_thresh)[0]
        return outlier_indices


class DHashDuplicateFilter(DataFilter):
    def __init__(self, hash_size: int = 8, console_output: bool = False):
        super().__init__()
        self.hash_size = hash_size
        self.console_output = console_output

    @visualize(60)
    @save_to_file()
    def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
        _, _, paths = self._load_data(data_dir)
        hashes = set()
        duplicates = []

        for path in paths:
            hash_ = imagehash.dhash(Image.open(path), self.hash_size)
            if hash_ in hashes:
                duplicates.append(path)
                if self.console_output:
                    print(f'[{self.__class__.__name__}]: Duplicate found at {path}')
            else:
                hashes.add(hash_)

        self.paths += duplicates
        return duplicates

    def clear(self) -> None:
        self.paths.clear()
        if self.console_output:
            print(f'[{self.__class__.__name__}]: Paths memory cleared.')

    def filter(self) -> bool:
        has_error = False
        for path in self.paths:
            if not Path(path).exists():
                has_error = True
                continue
            os.remove(path)
            if self.console_output:
                print(f'[{self.__class__.__name__}]: Removed {path}')
        return has_error


if __name__ == '__main__':
    dataset_dir = Path('./dataset')

    stats_filter = StatsDataFilter(_DATASET_AVG_MEAN, _DATASET_AVG_STD, True)
    pca_filter = PcaDataFilter(console_output=True)
    duplicate_filter = DHashDuplicateFilter(console_output=True)

    compose = DataFilterCompose.build([
        stats_filter,
        pca_filter,
        duplicate_filter
    ])

    # You may set the value of visualize_ or to_file parameters to True
    # to plot extracted images or save paths to a file.
    stats_filter.extract(dataset_dir, visualize_=False, to_file=False)

    # WARNING: uncommenting the line below will irreversibly remove dataset files
    # compose.filter()