Spaces:
Sleeping
Sleeping
File size: 2,992 Bytes
b066d77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import torch
from torch import nn
class ResNet18(nn.Module):
def __init__(self, in_channels: int, num_classes: int):
super().__init__()
self.initial_conv = nn.Conv2d(in_channels=in_channels,
out_channels=32,
kernel_size=5,
stride=1,
padding=2,
bias=False)
self.bn = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = nn.Sequential(
BasicBlock(32, 32),
BasicBlock(32, 32)
)
self.layer2 = nn.Sequential(
BasicBlock(32, 64, stride=2, downsample=self._downsample(32, 64)),
BasicBlock(64, 64)
)
self.layer3 = nn.Sequential(
BasicBlock(64, 128, stride=2, downsample=self._downsample(64, 128)),
BasicBlock(128, 128)
)
self.layer4 = nn.Sequential(
BasicBlock(128, 256, stride=2, downsample=self._downsample(128, 256)),
BasicBlock(256, 256)
)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.drop = nn.Dropout(0.15)
self.flatten = nn.Flatten(1)
self.fc = nn.Linear(256, num_classes)
@staticmethod
def _downsample(in_channels: int, out_channels: int) -> nn.Sequential:
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
x = self.initial_conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.max_pool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avg_pool(x)
x = self.drop(x)
x = self.flatten(x)
x = self.fc(x)
return x
class BasicBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None):
super().__init__()
self.downsample = downsample
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x: torch.Tensor) -> torch.Tensor:
identity = x
output = self.conv1(x)
output = self.bn1(output)
output = self.relu(output)
output = self.conv2(output)
output = self.bn2(output)
if self.downsample is not None:
identity = self.downsample(x)
output += identity
output = self.relu(output)
return output
|