Jan Maciejowski
commited on
Committed app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio Application Interface
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
import requests
|
7 |
+
import pandas as pd
|
8 |
+
import gensim
|
9 |
+
import re
|
10 |
+
import nltk
|
11 |
+
from nltk.corpus import stopwords, wordnet
|
12 |
+
from nltk.stem import WordNetLemmatizer
|
13 |
+
import os
|
14 |
+
|
15 |
+
def summarizer_func():
|
16 |
+
return pipeline(
|
17 |
+
model="Majon911/pegasus_multi_news_ep1",
|
18 |
+
tokenizer = "google/pegasus-xsum",
|
19 |
+
min_length=100, max_length=200,
|
20 |
+
truncation = True
|
21 |
+
)
|
22 |
+
|
23 |
+
def sentiment_func():
|
24 |
+
return pipeline("text-classification",
|
25 |
+
model="kbaumgartner/DeBERTa_Finetuned_Financial_News",
|
26 |
+
tokenizer = "microsoft/deberta-v3-base")
|
27 |
+
|
28 |
+
def source_outlet(choise):
|
29 |
+
if choise == 'CNBC':
|
30 |
+
url = "https://www.cnbc.com/finance/"
|
31 |
+
response = requests.get(url)
|
32 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
33 |
+
|
34 |
+
headlines = {}
|
35 |
+
headline_elements = soup.find_all('a', class_='Card-title')
|
36 |
+
for headline_element in headline_elements:
|
37 |
+
headlines[headline_element.text.strip()] = headline_element['href']
|
38 |
+
elif choise == "Reuters":
|
39 |
+
pass
|
40 |
+
|
41 |
+
df = pd.DataFrame({'headline': headlines.keys(),
|
42 |
+
'url': headlines.values()})
|
43 |
+
|
44 |
+
first_5_articles = df.head()
|
45 |
+
first_5_articles = first_5_articles.assign(text='')
|
46 |
+
first_5_articles = first_5_articles.assign(summary='')
|
47 |
+
first_5_articles = first_5_articles.assign(sentiment='')
|
48 |
+
first_5_articles = first_5_articles.assign(topic='')
|
49 |
+
return first_5_articles
|
50 |
+
|
51 |
+
def sentiment_translation(curr_sentiment):
|
52 |
+
if curr_sentiment == "LABEL_0":
|
53 |
+
trans_lbl = "NEGATIVE"
|
54 |
+
elif curr_sentiment == "LABEL_1":
|
55 |
+
trans_lbl = "NEUTRAL"
|
56 |
+
elif curr_sentiment == "LABEL_2":
|
57 |
+
trans_lbl = "POSITIVE"
|
58 |
+
return trans_lbl
|
59 |
+
|
60 |
+
def preprocess(text):
|
61 |
+
# Remove special characters and digits
|
62 |
+
text = text.lower()
|
63 |
+
text = re.sub("(\\d|\\W)+", " ", text)
|
64 |
+
stop_words = set(stopwords.words('english'))
|
65 |
+
lemmatizer = WordNetLemmatizer()
|
66 |
+
tokens = [lemmatizer.lemmatize(word) for word in text.lower().split() if word not in stop_words and len(word) > 3]
|
67 |
+
return tokens
|
68 |
+
|
69 |
+
def lda_topic_modeling(text):
|
70 |
+
lda_model = gensim.models.LdaModel.load("lda_gensim_5t/lda_model5.gensim")
|
71 |
+
dictionary = gensim.corpora.Dictionary.load("lda_gensim_5t/dictionary5.gensim")
|
72 |
+
|
73 |
+
processed_text = preprocess(text)
|
74 |
+
bow = dictionary.doc2bow(processed_text)
|
75 |
+
topic_distribution = lda_model.get_document_topics(bow, minimum_probability=0.0)
|
76 |
+
topic_distribution = sorted(topic_distribution, key=lambda x: x[1], reverse=True)
|
77 |
+
|
78 |
+
topic_names = {
|
79 |
+
'0': "Corporate Valuation & Performance",
|
80 |
+
'1': "Quarterly Financial Reports",
|
81 |
+
'2': "Stock Market & Investment Funds",
|
82 |
+
'3': "Corporate Affairs & Products",
|
83 |
+
'4': "Investment Research"
|
84 |
+
}
|
85 |
+
|
86 |
+
# Extract the most probable topic and its probability
|
87 |
+
if topic_distribution:
|
88 |
+
dominant_topic, probability = topic_distribution[0]
|
89 |
+
topic_name = topic_names.get(str(dominant_topic), "Unknown Topic")
|
90 |
+
return (topic_name, probability)
|
91 |
+
else:
|
92 |
+
# If no topic is found, return a placeholder and zero probability
|
93 |
+
return ("No Topic Found", 0.0)
|
94 |
+
|
95 |
+
def gradio_stocknews(source_ch, art_number):
|
96 |
+
|
97 |
+
# Defining the summarizer
|
98 |
+
summarizer = summarizer_func()
|
99 |
+
# Defining the semtiment analysis
|
100 |
+
pipe_sentiment = sentiment_func()
|
101 |
+
|
102 |
+
# Identyfying the Articles
|
103 |
+
first_5_articles = source_outlet(source_ch)
|
104 |
+
|
105 |
+
# Scraping text for the chosen article
|
106 |
+
response = requests.get(first_5_articles.loc[art_number-1, 'url'])
|
107 |
+
sub_soup = BeautifulSoup(response.content, 'html.parser')
|
108 |
+
article_body_element = sub_soup.find('div', class_='ArticleBody-articleBody') # ArticleBody-articleBody
|
109 |
+
article_text = article_body_element.get_text() # Extracting only the text
|
110 |
+
first_5_articles.loc[art_number-1, 'text'] = article_text
|
111 |
+
first_5_articles.loc[art_number-1, 'summary'] = summarizer(article_text)[0]['generated_text']
|
112 |
+
|
113 |
+
label_sentiment = pipe_sentiment(article_text)[0]['label']
|
114 |
+
first_5_articles.loc[art_number-1, 'sentiment'] = sentiment_translation(label_sentiment)
|
115 |
+
|
116 |
+
# Get the human-readable topic name using the topic names mapping
|
117 |
+
first_5_articles.loc[art_number-1, 'topic'] = lda_topic_modeling(article_text)[0]
|
118 |
+
|
119 |
+
|
120 |
+
return first_5_articles.loc[art_number-1, 'headline'], first_5_articles.loc[art_number-1, 'url'], first_5_articles.loc[art_number-1, 'summary'], first_5_articles.loc[art_number-1, 'sentiment'], first_5_articles.loc[art_number-1, 'topic']
|
121 |
+
|
122 |
+
def main():
|
123 |
+
os.chdir(os.path.dirname(os.path.realpath(__file__)))
|
124 |
+
|
125 |
+
#print(gradio_stocknews("CNBC", 2))
|
126 |
+
|
127 |
+
iface = gr.Interface(fn=gradio_stocknews,
|
128 |
+
inputs=[gr.Dropdown(choices=["CNBC"], label="Select Source"), gr.Dropdown(choices=[1, 2, 3, 4, 5], label="Select Article Number")],
|
129 |
+
outputs=[gr.Textbox(lines=1, label="Article Title"), gr.Textbox(lines=1, label="Article Link"), gr.Textbox(lines=1, label="Article Summary"), gr.Textbox(lines=1, label="Article Sentiment"), gr.Textbox(lines=1, label="Article Topic")], # Add this line for topic
|
130 |
+
title="Latest 5 Stock News Dashboard",
|
131 |
+
description="Click the button to refresh the news summary.")
|
132 |
+
|
133 |
+
iface.launch()
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
main()
|