File size: 6,063 Bytes
0a72c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import runpod
import os
import sys
from pathlib import Path
import torch
import gradio as gr
import tempfile
from PIL import Image
import numpy as np
import yaml
from typing import Dict, Any, Optional
import threading

# Add the MuseV directory to the Python path
musev_path = str(Path(__file__).parent.parent)
sys.path.append(musev_path)

# Import MuseV modules (adjust these imports based on the actual module structure)
from musev.pipelines import MuseVPipeline

class MuseVService:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.pipeline = None
        self.load_model()

    def load_model(self):
        # Initialize the MuseV pipeline (adjust parameters as needed)
        self.pipeline = MuseVPipeline.from_pretrained(
            "TMElyralab/MuseV",
            torch_dtype=torch.float16,
            device=self.device
        )
        self.pipeline.to(self.device)

    def generate_video(
        self,
        condition_image: Image.Image,
        prompt: str,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_frames: int = 16,
        eye_blinks_factor: float = 1.8,
    ) -> str:
        # Process inputs
        if height is None or width is None:
            width, height = condition_image.size
            aspect_ratio = width / height
            if width > height:
                width = min(width, 1024)
                height = int(width / aspect_ratio)
            else:
                height = min(height, 1024)
                width = int(height * aspect_ratio)

        # Create temporary directory for output
        with tempfile.TemporaryDirectory() as temp_dir:
            # Save condition image
            condition_image_path = os.path.join(temp_dir, "condition.png")
            condition_image.save(condition_image_path)

            # Prepare configuration
            config = {
                "condition_images": condition_image_path,
                "prompt": prompt,
                "height": height,
                "width": width,
                "eye_blinks_factor": eye_blinks_factor,
                "img_length_ratio": 1.0,
                "ipadapter_image": condition_image_path,
                "refer_image": condition_image_path,
            }

            # Generate video
            output_path = os.path.join(temp_dir, "output.mp4")
            self.pipeline.generate(config, output_path)
            
            # Read the video file and return as bytes
            with open(output_path, "rb") as f:
                video_bytes = f.read()
            
            return video_bytes

# Initialize the service
service = MuseVService()

def handler(event):
    """
    RunPod handler function for API requests
    """
    try:
        # Get the input data
        job_input = event["input"]
        
        # Process the input image
        image_data = job_input.get("image")
        if not image_data:
            raise ValueError("No image provided")
            
        # Convert base64 image to PIL
        import base64
        from io import BytesIO
        image = Image.open(BytesIO(base64.b64decode(image_data)))
        
        # Generate video
        video_bytes = service.generate_video(
            condition_image=image,
            prompt=job_input.get("prompt", ""),
            height=job_input.get("height"),
            width=job_input.get("width"),
            eye_blinks_factor=job_input.get("eye_blinks_factor", 1.8),
        )
        
        # Encode video as base64
        video_base64 = base64.b64encode(video_bytes).decode()
        
        return {
            "status": "success",
            "output": {
                "video": video_base64
            }
        }
    except Exception as e:
        return {
            "status": "error",
            "error": str(e)
        }

def create_gradio_interface():
    """
    Create Gradio interface
    """
    def generate_video_gradio(image, prompt, height, width, eye_blinks_factor):
        try:
            video_bytes = service.generate_video(
                condition_image=Image.fromarray(image),
                prompt=prompt,
                height=height if height > 0 else None,
                width=width if width > 0 else None,
                eye_blinks_factor=eye_blinks_factor
            )
            
            # Save video to temporary file
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
            temp_file.write(video_bytes)
            temp_file.close()
            
            return temp_file.name
        except Exception as e:
            raise gr.Error(str(e))

    # Create the interface
    interface = gr.Interface(
        fn=generate_video_gradio,
        inputs=[
            gr.Image(label="Input Image", type="numpy"),
            gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
            gr.Number(label="Height (optional)", value=0),
            gr.Number(label="Width (optional)", value=0),
            gr.Slider(minimum=0.0, maximum=3.0, value=1.8, label="Eye Blinks Factor")
        ],
        outputs=gr.Video(label="Generated Video"),
        title="MuseV Video Generation",
        description="Generate videos from images using MuseV",
        examples=[
            [
                "path/to/example/image.jpg",
                "(masterpiece, best quality, highres:1),(1person, solo:1),(eye blinks:1.8),(head wave:1.3)",
                512,
                512,
                1.8
            ]
        ]
    )
    return interface

if __name__ == "__main__":
    # Start both the RunPod handler and Gradio interface
    interface = create_gradio_interface()
    
    # Start Gradio in a separate thread
    threading.Thread(
        target=interface.launch,
        kwargs={
            "server_name": "0.0.0.0",
            "server_port": 3000,
            "share": False
        },
        daemon=True
    ).start()
    
    # Start the RunPod handler
    runpod.serverless.start({"handler": handler})