import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"jmartin233/bloom-1b7-lora-reading-comprehension" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def make_inference(product_name, product_description): batch = tokenizer( f"### Product and Description:\n{product_name}: {product_description}\n\n### Ad:", return_tensors="pt", ) with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) def make_inference(person, location, grammer, level): batch = tokenizer(f""" Below is a set of requirements for a short passage of English. Please write a passage that meets these requirements: ### Requirements: person: {person} location: {location}. grammar: {grammar} level: {level} ### Passage: Passage:""", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) if __name__ == "__main__": # make a gradio interface import gradio as gr gr.Interface( make_inference, [ gr.inputs.Textbox(lines=2, label="Someone's name"), gr.inputs.Textbox(lines=2, label="A location they might visit"), gr.inputs.Textbox(lines=2, label="A type of grammar to use"), gr.inputs.Textbox(lines=2, label="The leve of English to use (beginner, intermediate, advanced))"), ], gr.outputs.Textbox(label="Passage"), title="Reading Comprehension", description="A generative model that generates simple texts for testing reading comprehension.", ).launch()