Spaces:
Runtime error
Runtime error
Commit
·
a7d6c33
1
Parent(s):
fd843fb
Adding distortions
Browse files- GenerarSinteticos_3coord_denak.py +88 -0
- aaaaa.py +13 -2
- app.py +43 -14
GenerarSinteticos_3coord_denak.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from scipy.stats import multivariate_normal
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from mpl_toolkits.mplot3d import Axes3D
|
6 |
+
import aaaaa
|
7 |
+
|
8 |
+
# checked; it is ok
|
9 |
+
# To generate distorsed covariance matrixes
|
10 |
+
def genS(sds, R, distor=1):
|
11 |
+
# sds: standard deviations
|
12 |
+
# R: correlation matrix
|
13 |
+
# distor: level of distorsion
|
14 |
+
sdsdis = sds * distor
|
15 |
+
S = R * np.outer(sdsdis, sdsdis)
|
16 |
+
np.fill_diagonal(S, sdsdis ** 2)
|
17 |
+
return S
|
18 |
+
|
19 |
+
original_data_path = "/home/scpmaotj/Github/hcr/reference_data/"
|
20 |
+
synthetic_data_path = "/home/scpmaotj/Github/hcr/synthetic_data/"
|
21 |
+
plots_path = "/home/scpmaotj/Github/hcr/plots/"
|
22 |
+
nkey = 21
|
23 |
+
|
24 |
+
#Nivel distorsion
|
25 |
+
# 1 - Distorsionamos las desviaciones sin distorsionar la estructura de correlacion
|
26 |
+
# Funcion genS()
|
27 |
+
d = [1, 1.01, 1.05, 1.1, 1.2, 1.5, 1.7, 2]
|
28 |
+
# 2 - Distorsionamos las desviaciones y la estrucctura de correlacion
|
29 |
+
# Funcion???
|
30 |
+
|
31 |
+
# Intento sacar una mano al azar de una normal multivariante.
|
32 |
+
# Sacaremos m=100 observaciones
|
33 |
+
m = 100
|
34 |
+
#gesto <- 1
|
35 |
+
|
36 |
+
#for gesto in range(1, 43):
|
37 |
+
for gesto in range(1, 2):
|
38 |
+
print(gesto)
|
39 |
+
datXYZ = aaaaa.get_datXYZ(gesto, original_data_path)
|
40 |
+
# Hacemos un grafico con ndib= 16 lecturas, no las 16 primeras sino desplazadas pos=4 posiciones
|
41 |
+
ndib = 16
|
42 |
+
pos = 4
|
43 |
+
hands = datXYZ[pos:pos+ndib].reshape(ndib, nkey, 3)
|
44 |
+
fig, axes = plt.subplots(4, 4, subplot_kw={'projection': '3d'})
|
45 |
+
for i, ax in enumerate(axes.flat):
|
46 |
+
ax.scatter(hands[i, :, 0], hands[i, :, 1], hands[i, :, 2], c='b', marker='o')
|
47 |
+
ax.set_title(f"Original {i+pos}")
|
48 |
+
plt.savefig(plots_path + f"{gesto}orig.pdf")
|
49 |
+
plt.close()
|
50 |
+
|
51 |
+
obsmean = np.mean(datXYZ, axis=0)
|
52 |
+
obssd = np.std(datXYZ, axis=0)
|
53 |
+
R = np.corrcoef(datXYZ, rowvar=False)
|
54 |
+
|
55 |
+
id = len(d)
|
56 |
+
np.random.seed(3663)
|
57 |
+
|
58 |
+
for i in range(id):
|
59 |
+
Sberria = genS(obssd, R, distor=d[i])
|
60 |
+
z = multivariate_normal.rvs(mean=obsmean, cov=Sberria, size=m)
|
61 |
+
np.savetxt(synthetic_data_path + f"gesto{gesto}d{i-1}.csv", z, delimiter=',', fmt='%.6f')
|
62 |
+
simhands = z[pos:pos+ndib].reshape(ndib, nkey, 3).transpose(0, 2, 1)
|
63 |
+
fig, axes = plt.subplots(4, 4, subplot_kw={'projection': '3d'})
|
64 |
+
for j, ax in enumerate(axes.flat):
|
65 |
+
ax.scatter(simhands[j, 0, :], simhands[j, 1, :], simhands[j, 2, :], c='b', marker='o')
|
66 |
+
ax.set_title(f"Simulated, d={i-1}, It. {j+4}")
|
67 |
+
plt.savefig(plots_path + f"gesto{gesto}_3coord_d{i-1}.pdf")
|
68 |
+
plt.close()
|
69 |
+
|
70 |
+
# Selecciono un gesto, y miro algunas configuraciones simuladas segun grado de distorsion
|
71 |
+
gesto = 4
|
72 |
+
gd = 0
|
73 |
+
mirar = synthetic_data_path + f"gesto{gesto}d{gd}.csv"
|
74 |
+
z = np.loadtxt(mirar, delimiter=',')
|
75 |
+
m = z.shape[0]
|
76 |
+
simhands = np.zeros((nkey, 3, m))
|
77 |
+
for i in range(m):
|
78 |
+
simhands[:, :, i] = z[i].reshape(nkey, 3)
|
79 |
+
simhands = simhands.transpose(2, 0, 1)
|
80 |
+
simhands = np.swapaxes(simhands, 1, 2)
|
81 |
+
fig, axes = plt.subplots(4, 4, subplot_kw={'projection': '3d'})
|
82 |
+
for i, ax in enumerate(axes.flat):
|
83 |
+
ax.scatter(simhands[i, 0, :], simhands[i, 1, :], simhands[i, 2, :], c='b', marker='o')
|
84 |
+
ax.set_title(str(i+1))
|
85 |
+
plt.show()
|
86 |
+
|
87 |
+
|
88 |
+
|
aaaaa.py
CHANGED
@@ -2,6 +2,16 @@ import csv
|
|
2 |
import numpy as np
|
3 |
import plotly.graph_objects as go
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def get_datXYZ(gesto, data_path):
|
6 |
file_path = data_path + f"config{gesto}.csv"
|
7 |
with open(file_path, 'r') as file:
|
@@ -15,7 +25,7 @@ def get_datXYZ(gesto, data_path):
|
|
15 |
coordinates[i, j] = [x, y, z]
|
16 |
return coordinates
|
17 |
|
18 |
-
def plot_3d_points(points_21_3d):
|
19 |
# Create a scatter plot
|
20 |
colors = ['red', 'green', 'yellow', 'orange', 'blue']
|
21 |
colors = ["purple"]
|
@@ -55,6 +65,7 @@ def plot_3d_points(points_21_3d):
|
|
55 |
z=[start_point[2], end_point[2]],
|
56 |
mode='lines',
|
57 |
line=dict(color='black', width=2),
|
|
|
58 |
showlegend=False
|
59 |
)
|
60 |
|
@@ -68,7 +79,7 @@ def plot_3d_points(points_21_3d):
|
|
68 |
zaxis=dict(title='Z')
|
69 |
),
|
70 |
dragmode = 'orbit',
|
71 |
-
title=
|
72 |
)
|
73 |
|
74 |
# Return the figure
|
|
|
2 |
import numpy as np
|
3 |
import plotly.graph_objects as go
|
4 |
|
5 |
+
# To generate distorsed covariance matrixes
|
6 |
+
def genS(sds, R, distor=1):
|
7 |
+
# sds: standard deviations
|
8 |
+
# R: correlation matrix
|
9 |
+
# distor: level of distorsion
|
10 |
+
sdsdis = sds * distor
|
11 |
+
S = R * np.outer(sdsdis, sdsdis)
|
12 |
+
np.fill_diagonal(S, sdsdis ** 2)
|
13 |
+
return S
|
14 |
+
|
15 |
def get_datXYZ(gesto, data_path):
|
16 |
file_path = data_path + f"config{gesto}.csv"
|
17 |
with open(file_path, 'r') as file:
|
|
|
25 |
coordinates[i, j] = [x, y, z]
|
26 |
return coordinates
|
27 |
|
28 |
+
def plot_3d_points(points_21_3d, title):
|
29 |
# Create a scatter plot
|
30 |
colors = ['red', 'green', 'yellow', 'orange', 'blue']
|
31 |
colors = ["purple"]
|
|
|
65 |
z=[start_point[2], end_point[2]],
|
66 |
mode='lines',
|
67 |
line=dict(color='black', width=2),
|
68 |
+
name ="",
|
69 |
showlegend=False
|
70 |
)
|
71 |
|
|
|
79 |
zaxis=dict(title='Z')
|
80 |
),
|
81 |
dragmode = 'orbit',
|
82 |
+
title=title
|
83 |
)
|
84 |
|
85 |
# Return the figure
|
app.py
CHANGED
@@ -5,36 +5,65 @@ import matplotlib.pyplot as plt
|
|
5 |
from mpl_toolkits.mplot3d import Axes3D
|
6 |
from gradio.components import Slider, Number, Image, Dataframe, Textbox, Checkbox, Radio, Label, Plot
|
7 |
import plotly.graph_objects as go
|
8 |
-
import
|
9 |
-
from
|
10 |
import PIL.Image
|
11 |
|
12 |
data_path = "reference_data/"
|
13 |
image_path = "images_configs/"
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
datXYZ = get_datXYZ(gesto, data_path)
|
17 |
print(datXYZ.shape)
|
18 |
-
print(datXYZ)
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
reshaped_array = first_row[:63].reshape(21, 3) # Reshape the first row to (21, 3)
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
image_filename = image_path + str(int(gesto)) + ".png"
|
23 |
print(image_filename)
|
24 |
image = PIL.Image.open(image_filename)
|
25 |
-
width, height = image.size
|
26 |
-
newsize = (width // 2, height // 2)
|
27 |
-
image = image.resize(newsize)
|
28 |
# image = Image(image_filename) # Load the corresponding image
|
29 |
-
return image, hand_plot
|
30 |
|
31 |
inputs = [
|
32 |
-
Number(value=42, precision=0, label="Number of Hand Configuration"),
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
]
|
36 |
|
37 |
-
outputs = [Image(type="pil",
|
38 |
|
39 |
title = "Hand 3D Visualization"
|
40 |
description = "Enter the gesture number (gesto) and the data path (data_path) to visualize the hand in 3D."
|
|
|
5 |
from mpl_toolkits.mplot3d import Axes3D
|
6 |
from gradio.components import Slider, Number, Image, Dataframe, Textbox, Checkbox, Radio, Label, Plot
|
7 |
import plotly.graph_objects as go
|
8 |
+
from aaaaa import get_datXYZ, plot_3d_points, genS
|
9 |
+
from scipy.stats import multivariate_normal
|
10 |
import PIL.Image
|
11 |
|
12 |
data_path = "reference_data/"
|
13 |
image_path = "images_configs/"
|
14 |
|
15 |
+
# To generate distorsed covariance matrixes
|
16 |
+
def genS(sds, R, distor=1):
|
17 |
+
# sds: standard deviations
|
18 |
+
# R: correlation matrix
|
19 |
+
# distor: level of distorsion
|
20 |
+
sdsdis = sds * distor
|
21 |
+
S = R * np.outer(sdsdis, sdsdis)
|
22 |
+
np.fill_diagonal(S, sdsdis ** 2)
|
23 |
+
return S
|
24 |
+
|
25 |
+
def show_hand_3d(gesto, attempt, distortion, mean, std):
|
26 |
datXYZ = get_datXYZ(gesto, data_path)
|
27 |
print(datXYZ.shape)
|
28 |
+
# print(datXYZ)
|
29 |
+
obsmean = np.mean(datXYZ, axis=0)
|
30 |
+
print(obsmean.shape)
|
31 |
+
# change to 63 shape
|
32 |
+
obsmean = obsmean.reshape(63)
|
33 |
+
obssd = np.std(datXYZ, axis=0)
|
34 |
+
print(obssd.shape)
|
35 |
+
obssd = obssd.reshape(63)
|
36 |
+
datXYZ_reshaped = datXYZ.reshape(datXYZ.shape[0], -1)
|
37 |
+
R = np.corrcoef(datXYZ_reshaped, rowvar=False)
|
38 |
+
Sberria = genS(obssd, R, distor=distortion)
|
39 |
+
z = multivariate_normal.rvs(mean=obsmean, cov=Sberria, size=1)
|
40 |
+
print(z.shape)
|
41 |
+
# print(z)
|
42 |
+
# add here the code to transform z into an array eith the same shape as datXYZ
|
43 |
+
first_row = datXYZ[attempt] # Extract the attempt row of the array
|
44 |
reshaped_array = first_row[:63].reshape(21, 3) # Reshape the first row to (21, 3)
|
45 |
+
# create noise from mean and std
|
46 |
+
noise = np.random.normal(mean, std, reshaped_array.shape)
|
47 |
+
reshaped_array_with_noise = reshaped_array + noise
|
48 |
+
distorted_hand = z.reshape(reshaped_array.shape)
|
49 |
+
hand_plot = plot_3d_points(reshaped_array, "Recorded Hand Configuration")
|
50 |
+
distorted_hand_plot = plot_3d_points(distorted_hand, "Distorted Hand Configuration (global)")
|
51 |
+
reshaped_array_with_noise_plot = plot_3d_points(reshaped_array_with_noise, "Distorted Hand Configuration (individual))")
|
52 |
image_filename = image_path + str(int(gesto)) + ".png"
|
53 |
print(image_filename)
|
54 |
image = PIL.Image.open(image_filename)
|
|
|
|
|
|
|
55 |
# image = Image(image_filename) # Load the corresponding image
|
56 |
+
return image, hand_plot, distorted_hand_plot, reshaped_array_with_noise_plot
|
57 |
|
58 |
inputs = [
|
59 |
+
Number(value=42, precision=0, label="Number of Kind of Hand Configuration"),
|
60 |
+
Number(value=0, precision=0, label="Number of Concrete Hand Attempt"),
|
61 |
+
Number(value=1.0, label="Distortion Level"),
|
62 |
+
Number(value=0.0, label="Mean Distortion Level (one hand)"),
|
63 |
+
Number(value=0.006, label="Standard Deviation Distortion Level (one hand)")
|
64 |
]
|
65 |
|
66 |
+
outputs = [Image(type="pil"), Plot(), Plot(), Plot()]
|
67 |
|
68 |
title = "Hand 3D Visualization"
|
69 |
description = "Enter the gesture number (gesto) and the data path (data_path) to visualize the hand in 3D."
|