import csv import numpy as np import plotly.graph_objects as go # To generate distorsed covariance matrixes def genS(sds, R, distor=1): # sds: standard deviations # R: correlation matrix # distor: level of distorsion sdsdis = sds * distor S = R * np.outer(sdsdis, sdsdis) np.fill_diagonal(S, sdsdis ** 2) return S def get_datXYZ(gesto, data_path): file_path = data_path + f"config{gesto}.csv" with open(file_path, 'r') as file: csv_reader = csv.reader(file) data = list(csv_reader) n = len(data) coordinates = np.zeros((n, 21, 3)) for i, row in enumerate(data): for j in range(21): x, y, z = map(float, row[j*3 : (j+1)*3]) coordinates[i, j] = [x, y, z] return coordinates def plot_3d_points(points_21_3d, title): # Create a scatter plot colors = ['red', 'green', 'yellow', 'orange', 'blue'] colors = ["purple"] colors += ["red"] * 4 colors += ["green"] * 4 colors += ["yellow"] * 4 colors += ["orange"] * 4 colors += ["blue"] * 4 fig = go.Figure(data=go.Scatter3d( x=points_21_3d[:, 0], y=points_21_3d[:, 1], z=points_21_3d[:, 2], mode='markers', marker=dict( size=5, color=colors, opacity=0.8 ) )) # Define the line segments segments = [(0, 1), (1, 2), (2, 3), (3, 4), # Thumb, 4 segments (0, 5), (5, 6), (6, 7), (7, 8), # Index, 4 segments (0, 9), (9, 10), (10, 11), (11, 12), # Middle, 4 segments (0, 13), (13, 14), (14, 15), (15, 16), # Ring, 4 segments (0, 17), (17, 18), (18, 19), (19, 20)] # Little, 4 segments # Create a Scatter3d trace for each segment and add to the figure for segment in segments: start_index, end_index = segment start_point = points_21_3d[start_index] end_point = points_21_3d[end_index] line = go.Scatter3d( x=[start_point[0], end_point[0]], y=[start_point[1], end_point[1]], z=[start_point[2], end_point[2]], mode='lines', line=dict(color='black', width=2), name ="", showlegend=False ) fig.add_trace(line) # Set axes labels and title fig.update_layout( scene=dict( xaxis=dict(title='X'), yaxis=dict(title='Y'), zaxis=dict(title='Z') ), dragmode = 'orbit', title=title ) # Return the figure return fig