import altair as alt import gradio as gr import numpy as np import pandas as pd from vega_datasets import data import plotly.graph_objects as go def plot_random_points_3d(num_points): # Generate random points in 3D space np.random.seed(42) # Setting a seed for reproducibility x = np.random.randn(num_points) y = np.random.randn(num_points) z = np.random.randn(num_points) # Create a scatter plot fig = go.Figure(data=go.Scatter3d( x=x, y=y, z=z, mode='markers', marker=dict( size=5, color='blue', opacity=0.8 ) )) # Set axes labels and title fig.update_layout( scene=dict( xaxis=dict(title='X'), yaxis=dict(title='Y'), zaxis=dict(title='Z') ), title='3D Random Points' ) # Return the figure return fig def make_plot(plot_type): if plot_type == "multiline": source = data.stocks() highlight = alt.selection(type='single', on='mouseover', fields=['symbol'], nearest=True) base = alt.Chart(source).encode( x='date:T', y='price:Q', color='symbol:N' ) points = base.mark_circle().encode( opacity=alt.value(0) ).add_selection( highlight ).properties( width=600 ) lines = base.mark_line().encode( size=alt.condition(~highlight, alt.value(1), alt.value(3)) ) return points + lines elif plot_type == "3Dplot": return plot_random_points_3d(100) with gr.Blocks() as demo: button = gr.Radio(label="Plot type", choices=["multiline", "3Dplot"], value='3Dplot') plot = gr.Plot(label="Plot") button.change(make_plot, inputs=button, outputs=[plot]) demo.load(make_plot, inputs=[button], outputs=[plot]) if __name__ == "__main__": demo.launch()