import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from gradio.components import Slider, Number, Image, Dataframe, Textbox, Checkbox, Radio, Label, Plot import plotly.graph_objects as go from aaaaa import get_datXYZ, plot_3d_points, genS from scipy.stats import multivariate_normal import PIL.Image data_path = "reference_data/" image_path = "images_configs/" # To generate distorsed covariance matrixes def genS(sds, R, distor=1): # sds: standard deviations # R: correlation matrix # distor: level of distorsion sdsdis = sds * distor S = R * np.outer(sdsdis, sdsdis) np.fill_diagonal(S, sdsdis ** 2) return S def show_hand_3d(gesto, attempt, distortion, mean, std): datXYZ = get_datXYZ(gesto, data_path) print(datXYZ.shape) # print(datXYZ) obsmean = np.mean(datXYZ, axis=0) print(obsmean.shape) # change to 63 shape obsmean = obsmean.reshape(63) obssd = np.std(datXYZ, axis=0) print(obssd.shape) obssd = obssd.reshape(63) datXYZ_reshaped = datXYZ.reshape(datXYZ.shape[0], -1) R = np.corrcoef(datXYZ_reshaped, rowvar=False) Sberria = genS(obssd, R, distor=distortion) z = multivariate_normal.rvs(mean=obsmean, cov=Sberria, size=1) print(z.shape) # print(z) # add here the code to transform z into an array eith the same shape as datXYZ first_row = datXYZ[attempt] # Extract the attempt row of the array reshaped_array = first_row[:63].reshape(21, 3) # Reshape the first row to (21, 3) # create noise from mean and std noise = np.random.normal(mean, std, reshaped_array.shape) reshaped_array_with_noise = reshaped_array + noise distorted_hand = z.reshape(reshaped_array.shape) hand_plot = plot_3d_points(reshaped_array, "Recorded Hand Configuration") distorted_hand_plot = plot_3d_points(distorted_hand, "Distorted Hand Configuration (global)") reshaped_array_with_noise_plot = plot_3d_points(reshaped_array_with_noise, "Distorted Hand Configuration (individual))") image_filename = image_path + str(int(gesto)) + ".png" print(image_filename) image = PIL.Image.open(image_filename) # image = Image(image_filename) # Load the corresponding image return image, hand_plot, distorted_hand_plot, reshaped_array_with_noise_plot inputs = [ Number(value=42, precision=0, label="Number of Kind of Hand Configuration"), Number(value=0, precision=0, label="Number of Concrete Hand Attempt"), Number(value=1.0, label="Distortion Level"), Number(value=0.0, label="Mean Distortion Level (one hand)"), Number(value=0.006, label="Standard Deviation Distortion Level (one hand)") ] outputs = [Image(type="pil"), Plot(), Plot(), Plot()] title = "Hand 3D Visualization" description = "Enter the gesture number (gesto) and the data path (data_path) to visualize the hand in 3D." iface = gr.Interface(fn=show_hand_3d, inputs=inputs, outputs=outputs, title=title, description=description, allow_flagging="never") iface.launch()