Spaces:
Sleeping
Sleeping
Commit
·
d598a5e
1
Parent(s):
3cc2cf7
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
def compute_line_parameters(slope, intercept, mean, std, num_points, x_min, x_max, num_iterations):
|
5 |
+
line_parameters = np.zeros((num_iterations, 2))
|
6 |
+
for i in range(num_iterations):
|
7 |
+
# Generate points on the line with noise
|
8 |
+
x_values, y_values_with_noise = predict_line_with_noise(slope, intercept, mean, std, num_points, x_min, x_max)
|
9 |
+
|
10 |
+
# Randomly sample two points from the line
|
11 |
+
idx = np.random.choice(num_points, 2, replace=False)
|
12 |
+
x1, y1 = x_values[idx[0]], y_values_with_noise[idx[0]]
|
13 |
+
x2, y2 = x_values[idx[1]], y_values_with_noise[idx[1]]
|
14 |
+
|
15 |
+
# Compute slope and intercept of line passing through sampled points
|
16 |
+
line_slope = (y2 - y1) / (x2 - x1)
|
17 |
+
line_intercept = y1 - line_slope * x1
|
18 |
+
|
19 |
+
line_parameters[i, 0] = line_slope
|
20 |
+
line_parameters[i, 1] = line_intercept
|
21 |
+
|
22 |
+
return line_parameters
|
23 |
+
|
24 |
+
from sklearn.cluster import KMeans
|
25 |
+
# import matplotlib.pyplot as plt
|
26 |
+
|
27 |
+
import gradio as gr
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
import numpy as np
|
30 |
+
from sklearn.cluster import KMeans
|
31 |
+
|
32 |
+
def cluster_line_parameters(line_parameters, num_clusters):
|
33 |
+
# Cluster line parameters using KMeans
|
34 |
+
kmeans = KMeans(n_clusters=num_clusters)
|
35 |
+
kmeans.fit(line_parameters)
|
36 |
+
labels = kmeans.labels_
|
37 |
+
centroids = kmeans.cluster_centers_
|
38 |
+
# how many points are in each cluster
|
39 |
+
counts = np.bincount(labels)
|
40 |
+
|
41 |
+
# Create a scatter plot of the data points
|
42 |
+
fig, ax = plt.subplots()
|
43 |
+
ax.scatter(line_parameters[:, 0], line_parameters[:, 1], c=labels, cmap='viridis')
|
44 |
+
ax.set_xlabel('Slope')
|
45 |
+
ax.set_ylabel('Intercept')
|
46 |
+
|
47 |
+
# Generate some lines using the centroids
|
48 |
+
'''
|
49 |
+
x = np.linspace(x_min, x_max, num_points)
|
50 |
+
for i in range(num_clusters):
|
51 |
+
slope, intercept = centroids[i]
|
52 |
+
y = slope * x + intercept
|
53 |
+
ax.plot(x, y, linewidth=2)
|
54 |
+
'''
|
55 |
+
|
56 |
+
# Convert the figure to a PNG image
|
57 |
+
fig.canvas.draw()
|
58 |
+
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
59 |
+
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
60 |
+
|
61 |
+
# Close the figure to free up memory
|
62 |
+
plt.close(fig)
|
63 |
+
|
64 |
+
# Return the labels, centroids, and image
|
65 |
+
return labels, centroids, counts, img
|
66 |
+
|
67 |
+
import gradio as gr
|
68 |
+
|
69 |
+
def predict_line_with_noise(slope, intercept, mean, std, num_points, x_min, x_max):
|
70 |
+
x_values = np.linspace(x_min, x_max, num_points)
|
71 |
+
noise = np.random.normal(mean, std, num_points)
|
72 |
+
y_values = slope * x_values + intercept + noise
|
73 |
+
return x_values, y_values
|
74 |
+
|
75 |
+
def cluster_line_params(slope, intercept, mean, std, num_points, x_min, x_max, num_iterations, num_clusters):
|
76 |
+
num_points = int(num_points)
|
77 |
+
num_iterations = int(num_iterations)
|
78 |
+
num_clusters = int(num_clusters)
|
79 |
+
line_parameters = compute_line_parameters(slope, intercept, mean, std, num_points, x_min, x_max, num_iterations)
|
80 |
+
labels, centroids, counts, img = cluster_line_parameters(line_parameters, num_clusters)
|
81 |
+
# return labels, centroids, img
|
82 |
+
# put counts as the third column of centroids
|
83 |
+
centroids = np.c_[centroids, counts]
|
84 |
+
df = pd.DataFrame(centroids, columns=["Slope", "Intercept", "Count"])
|
85 |
+
# return img, centroids, df
|
86 |
+
return img, df
|
87 |
+
|
88 |
+
# Define input and output components
|
89 |
+
inputs = [
|
90 |
+
gr.inputs.Slider(minimum=-5.0, maximum=5.0, default=1.0, label="Slope"),
|
91 |
+
gr.inputs.Slider(minimum=-10.0, maximum=10.0, default=0.0, label="Intercept"),
|
92 |
+
gr.inputs.Slider(minimum=0.0, maximum=5.0, default=1.0, label="Mean"),
|
93 |
+
gr.inputs.Slider(minimum=0.0, maximum=5.0, default=1.0, label="Standard Deviation"),
|
94 |
+
gr.inputs.Number(default=100, label="Number of Points"),
|
95 |
+
gr.inputs.Number(default=-5, label="Minimum Value of x"),
|
96 |
+
gr.inputs.Number(default=5, label="Maximum Value of x"),
|
97 |
+
gr.inputs.Number(default=100, label="Number of Iterations"),
|
98 |
+
gr.inputs.Number(default=3, label="Number of Clusters")
|
99 |
+
]
|
100 |
+
|
101 |
+
outputs = [
|
102 |
+
#image and numpy
|
103 |
+
gr.outputs.Image(label="Image", type="pil"),
|
104 |
+
# show the centroids and counts, which is a numpy array
|
105 |
+
gr.outputs.Dataframe(label="Centroids and Counts", type="pandas")
|
106 |
+
]
|
107 |
+
|
108 |
+
# Create the Gradio interface
|
109 |
+
interface = gr.Interface(
|
110 |
+
fn=cluster_line_params,
|
111 |
+
inputs=inputs,
|
112 |
+
# outputs=["numpy", "numpy", "image"],
|
113 |
+
outputs=outputs,
|
114 |
+
title="Line Parameter Clustering",
|
115 |
+
description="Cluster line parameters with Gaussian noise",
|
116 |
+
allow_flagging=False
|
117 |
+
)
|
118 |
+
|
119 |
+
# Launch the interface
|
120 |
+
interface.launch(share=True)
|
121 |
+
|
122 |
+
|
123 |
+
|