Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,21 @@ import os
|
|
2 |
os.system("pip install git+https://github.com/openai/whisper.git")
|
3 |
import gradio as gr
|
4 |
import whisper
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
model = whisper.load_model("small")
|
7 |
|
8 |
-
|
|
|
|
|
9 |
audio = whisper.load_audio(audio)
|
10 |
audio = whisper.pad_or_trim(audio)
|
11 |
|
@@ -19,6 +30,15 @@ def inference(audio):
|
|
19 |
print(result.text)
|
20 |
return result.text, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
block = gr.Blocks()
|
23 |
with block:
|
24 |
with gr.Group():
|
@@ -37,9 +57,14 @@ with block:
|
|
37 |
|
38 |
|
39 |
|
40 |
-
btn.click(
|
41 |
|
42 |
|
43 |
block.launch()
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
2 |
os.system("pip install git+https://github.com/openai/whisper.git")
|
3 |
import gradio as gr
|
4 |
import whisper
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
+
|
9 |
+
#call tokenizer and NLP model for text classification
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
11 |
+
model_nlp = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
12 |
+
config = AutoConfig.from_pretrained(model_nlp)
|
13 |
+
|
14 |
+
# call whisper model for audio/speech processing
|
15 |
model = whisper.load_model("small")
|
16 |
|
17 |
+
|
18 |
+
|
19 |
+
def inference_audio(audio):
|
20 |
audio = whisper.load_audio(audio)
|
21 |
audio = whisper.pad_or_trim(audio)
|
22 |
|
|
|
30 |
print(result.text)
|
31 |
return result.text, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
32 |
|
33 |
+
def inference_text(audio):
|
34 |
+
text,_,_,_ =inference_audio(audio)
|
35 |
+
|
36 |
+
sentiment_task = pipeline("sentiment-analysis", model=model_nlp, tokenizer=tokenizer)
|
37 |
+
result=sentiment_task(text)
|
38 |
+
return result
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
block = gr.Blocks()
|
43 |
with block:
|
44 |
with gr.Group():
|
|
|
57 |
|
58 |
|
59 |
|
60 |
+
btn.click(inference_text, inputs=[audio], outputs=[text])
|
61 |
|
62 |
|
63 |
block.launch()
|
64 |
|
65 |
|
66 |
+
|
67 |
+
from transformers import pipeline
|
68 |
+
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
69 |
+
sentiment_task("Covid cases are increasing fast!")
|
70 |
+
|