jnaiman commited on
Commit
b66e25a
·
1 Parent(s): 4096d6d
Hello.py CHANGED
@@ -8,3 +8,88 @@ st.set_page_config(
8
 
9
  st.sidebar.success("Select a Page")
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  st.sidebar.success("Select a Page")
10
 
11
+ st.title('Getting Setup for Streamlit Spaces')
12
+
13
+ st.markdown("""
14
+ ## Step 1: Install what you need for this notebook
15
+
16
+ It is recommended you install into a conda environment:
17
+
18
+ ```
19
+ conda create -n DataVizClass python=3.10
20
+ conda activate DataVizClass
21
+ ```
22
+
23
+ Then you can install the correct packages.
24
+
25
+ ```
26
+ pip install streamlit==1.39.0 altair numpy pandas matplotlib
27
+ ```
28
+
29
+ To work with the VSCode interface, be sure that `jupyter` is also installed:
30
+
31
+ ```
32
+ pip install jupyter
33
+ ```
34
+
35
+ Or you can install with `conda`.
36
+
37
+ Note that the package [Streamlit](https://streamlit.io/) that we will be working with requires we use Python scripts, so JupyterLab and/or Jupyter Notebooks won't work for this process. """)
38
+
39
+ st.markdown("""
40
+ ## Step 2: Clone the App files -- Option 1 (HuggingFace)
41
+ """)
42
+
43
+ st.markdown("""
44
+ ### Step 2.1: Duplicate the HuggingFace App
45
+ """)
46
+
47
+ st.markdown("""
48
+ If you want to be able to deploy your own app on your own HuggingFace account,
49
+ you first need to duplicate this space.
50
+
51
+ To duplicate, right click on the 3 dots to the left of your profile icon: """)
52
+
53
+ st.image("images/duplicateSpace_p1.png")
54
+
55
+ st.markdown("""
56
+ Make sure your user name is selected, and it is set to `Public` for visibility. Name the space whatever you want:
57
+ """)
58
+
59
+ st.image("images/duplicateSpace_p2.png")
60
+
61
+ st.markdown("""
62
+ ### Step 2.2: Clone *your duplicated* Space
63
+ """)
64
+
65
+ st.markdown("""
66
+ First, be sure that `git-lfs` is installed, and then clone *your* duplicated space repo.
67
+
68
+ You can find instructions for this by once again right-clicking the 3 dots and clicking on "Clone Repository":
69
+ """)
70
+
71
+ st.image("images/clone_the_repo.png")
72
+
73
+ st.markdown("""
74
+ Then you will be given this set of instructions (note your repo name will be different!):
75
+ """)
76
+
77
+ st.image("images/gitclone_hf.png")
78
+
79
+ st.markdown("""
80
+ """)
81
+
82
+ st.markdown("""
83
+ Now you should have a repository folder on your local computer that has your repo name and the files for this app.
84
+ """)
85
+
86
+ st.markdown("""
87
+ ## Step 2: Clone the App files -- Option 2 (GitHub)
88
+ """)
89
+
90
+ st.markdown("""
91
+ If you don't want to mess around with HuggingFace and just want to play around with Streamlit locally,
92
+ you can also download these files from GitHub by [cloning this repository right here](https://github.com/jnaiman/shadisClassApp).
93
+
94
+ For info about using git commands to clone a repository, [see this link right here](https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository).
95
+ """)
app.py DELETED
@@ -1,432 +0,0 @@
1
-
2
- #######################################################
3
- # 1. Getting setup -- using our HF template
4
- #######################################################
5
-
6
- # We have a few options for how to proceed. I'll start by showing the process in
7
- # PL and then I'll move to my local installation of my template so that I can make
8
- # sure I am pushing code at various intervals so folks can check that out.
9
-
10
- # NOTE: during this process, you can click on "Always Rerun" for automatic updates.
11
-
12
- # See the class notes on this with some photos for reference!
13
- # **this has to be implemented!**
14
-
15
-
16
- ###################################################################
17
- # 2. Review of where we got to last time, in template app.py file
18
- ###################################################################
19
-
20
-
21
- # Let's start by copying things we did last time
22
- import streamlit as st
23
- import altair as alt
24
-
25
- # Let's recall a plot that we made with Altair in Jupyterlab:
26
- # Make sure we copy the URL as well!
27
- mobility_url = 'https://raw.githubusercontent.com/UIUC-iSchool-DataViz/is445_data/main/mobility.csv'
28
-
29
- st.title('This is my fancy app for HuggingFace!!')
30
-
31
- scatters = alt.Chart(mobility_url).mark_point().encode(
32
- x='Mobility:Q', # "Q for quantiative"
33
- #y='Population:Q',
34
- y=alt.Y('Population:Q', scale=alt.Scale(type='log')),
35
- color=alt.Color('Income:Q', scale=alt.Scale(scheme='sinebow'),bin=alt.Bin(maxbins=5))
36
- )
37
-
38
- st.header('More complex Dashboards')
39
-
40
- brush = alt.selection_interval(encodings=['x','y'])
41
-
42
- chart1 = alt.Chart(mobility_url).mark_rect().encode(
43
- alt.X("Student_teacher_ratio:Q", bin=alt.Bin(maxbins=10)),
44
- alt.Y("State:O"),
45
- alt.Color("count()")
46
- ).properties(
47
- height=400
48
- ).add_params(
49
- brush
50
- )
51
-
52
- chart2 = alt.Chart(mobility_url).mark_bar().encode(
53
- alt.X("Mobility:Q", bin=True,axis=alt.Axis(title='Mobility Score')),
54
- alt.Y('count()', axis=alt.Axis(title='Mobility Score Distribution'))
55
- ).transform_filter(
56
- brush
57
- )
58
-
59
- chart = (chart1.properties(width=300) | chart2.properties(width=300))
60
-
61
- tab1, tab2 = st.tabs(["Mobility interactive", "Scatter plot"])
62
-
63
- with tab1:
64
- st.altair_chart(chart, theme=None, use_container_width=True)
65
- with tab2:
66
- st.altair_chart(scatters, theme=None, use_container_width=True)
67
-
68
-
69
- ################################################
70
- # 3. Adding features, Pushing to HF
71
- ################################################
72
-
73
- st.header('Requirements, README file, Pushing to HuggingFace')
74
-
75
- ### 3.1 Make a plot ###
76
-
77
- # Let's say we want to add in some matplotlib plots from some data we read
78
- # in with Pandas.
79
-
80
- import pandas as pd
81
- df = pd.read_csv(mobility_url)
82
-
83
- # There are a few ways to show the dataframe if we want our viewer to see the table:
84
- #df
85
- st.write(df)
86
-
87
- # Now, let's plot with matplotlib:
88
- import matplotlib.pyplot as plt
89
-
90
- fig, ax = plt.subplots()
91
- df['Seg_income'].plot(kind='hist', ax=ax)
92
- #plt.show() # but wait! this doesn't work!
93
-
94
- # We need to use the streamlit-specific way of showing matplotlib plots: https://docs.streamlit.io/develop/api-reference/charts/st.pyplot
95
- st.pyplot(fig)
96
-
97
- ### 3.2 Push these changes to HF -- requirements.txt ###
98
- # In order to push these changes to HF and have things actually show up we need to
99
- # add the packages we've added to our requirements.txt file.
100
-
101
- st.write('''The requirements.txt file contains all the packages needed
102
- for our app to run. These include (for our application):''')
103
- st.code('''
104
- streamlit==1.39.0
105
- altair
106
- numpy
107
- pandas
108
- matplotlib
109
- ''')
110
-
111
- # NOTE: for any package you want to use in your app.py file, you must include it in
112
- # the requirements.txt file!
113
-
114
- # Note #2: we specified a version of streamlit so we can use some specific widgets
115
-
116
- ### 3.3 Push these changes to HF -- README.md ###
117
-
118
- # While we're doing this, let's also take a look at the README.md file!
119
-
120
- st.header('Build in HF: README.md & requirements.txt files')
121
-
122
- st.code('''
123
- ---
124
- title: Prep notebook -- My Streamlit App
125
- emoji: 🏢
126
- colorFrom: blue
127
- colorTo: gray
128
- sdk: streamlit
129
- sdk_version: 1.39.0
130
- app_file: app.py
131
- pinned: false
132
- license: mit
133
- ---
134
- ''')
135
- st.write("Note: the sdk version has to match what is in your requirements.txt (and with whatever widgets you want to be able to use).")
136
-
137
- # Some important things to note here:
138
-
139
- st.write('Some important items to note about these:')
140
- st.markdown('''
141
- * the "emoji" is what will show up as an identifier on your homepage
142
- * the sdk *must* be streamlit
143
- * the "app_file" *must* link to the app file you are developing in
144
- ''')
145
-
146
- ################################################
147
- # 4. TODO Quick intro to widgets
148
- ################################################
149
-
150
- st.header('Widgets in Streamlit apps')
151
-
152
- ### 4.1 Widget basics: A few widget examples ###
153
-
154
- st.markdown("""
155
- These will be very similar to how we used the `ipywidgets` package in Jupyter notebooks.
156
- """)
157
-
158
- st.markdown("""
159
- We won't go over all of them, but you can check out the [list of widgets](https://docs.streamlit.io/develop/api-reference/widgets)
160
- linked.
161
- """)
162
-
163
- st.markdown("""Let's try a few!""")
164
-
165
- st.subheader('Feedback Widget')
166
-
167
- st.markdown("""
168
- For example, we could try the [feedback widget](https://docs.streamlit.io/develop/api-reference/widgets/st.feedback).
169
- """
170
- )
171
- st.markdown("""
172
- If we check out the docs for this widget, we see some familiar looking functions like
173
- `on_change` and the example they give looks very similar to an
174
- "observation" function that we built before using widgets:
175
- """)
176
-
177
- st.code(
178
- """
179
- sentiment_mapping = ["one", "two", "three", "four", "five"]
180
- selected = st.feedback("stars")
181
- if selected is not None:
182
- st.markdown(f"You selected {sentiment_mapping[selected]} star(s).")
183
- """)
184
-
185
- # Let's give this a shot!
186
-
187
- st.write("How great are you feeling right now?")
188
- sentiment_mapping = ["one", "two", "three", "four", "five"] # map to these numers
189
- selected = st.feedback("stars")
190
- if selected is not None: # make sure we have a selection
191
- st.markdown(f"You selected {sentiment_mapping[selected]} star(s).")
192
- if selected < 1:
193
- st.markdown('Sorry to hear you are so sad :(')
194
- elif selected < 3:
195
- st.markdown('A solid medium is great!')
196
- else:
197
- st.markdown('Fantastic you are having such a great day!')
198
-
199
- st.subheader('Radio Buttons')
200
-
201
- st.markdown("""
202
- Let's try out a [radio button](https://docs.streamlit.io/develop/api-reference/widgets/st.radio) example.
203
- """)
204
-
205
- favoriteViz = st.radio(
206
- "What's your visualization tool so far?",
207
- [":rainbow[Streamlit]", "vega-lite :sparkles:", "matplotlib :material/Home:"],
208
- captions=[
209
- "New and cool!",
210
- "So sparkly.",
211
- "Familiar and comforting.",
212
- ],
213
- )
214
-
215
- if favoriteViz == ":rainbow[Streamlit]":
216
- st.write("You selected Streamlit!")
217
- else:
218
- st.write("You didn't select Streamlit but that's ok, Data Viz still likes you :grin:")
219
-
220
- st.markdown("""
221
- Note here that we made use of text highlight [colors](https://docs.streamlit.io/develop/api-reference/text/st.markdown)
222
- and [emoji's](https://streamlit-emoji-shortcodes-streamlit-app-gwckff.streamlit.app/)
223
- and [icons](https://fonts.google.com/icons?icon.set=Material+Symbols&icon.style=Rounded).
224
- """)
225
-
226
- ### 4.2 Connecting widgets with plots ###
227
-
228
- st.subheader('Connecting Widgets and Plots')
229
-
230
-
231
- st.markdown("""
232
- There are actually [many types of charts](https://docs.streamlit.io/develop/api-reference/charts)
233
- supported in Streamlit (including the Streamlit-based "Simple Charts"),
234
- though we will just mainly be focusing on [Altair-related](https://docs.streamlit.io/develop/api-reference/charts/st.altair_chart) plots
235
- and their interactivity options since we'll also be making use of these when
236
- we move to building Jekyll webpages.
237
- """)
238
-
239
- st.markdown("""Since `matplotlib` is relatively familiar though, let's do a quick
240
- example using `pandas` and `matplotlib` to plot as
241
- Streamlit [does support `matplotlib`](https://docs.streamlit.io/develop/api-reference/charts/st.pyplot)
242
- as a plotting engine. """)
243
-
244
- st.markdown("""First, let's just make a simple plot with `pandas` and `matplotlib`.
245
- Let's re-do the matplotlib plots we did before with the mobility dataset
246
- with some interactivity. """)
247
-
248
- import pandas as pd
249
- import numpy as np
250
-
251
- # first, let's make a static plot:
252
- st.write("We'll start with a static plot:")
253
- # read in dataset
254
- df = pd.read_csv("https://raw.githubusercontent.com/UIUC-iSchool-DataViz/is445_data/main/mobility.csv")
255
-
256
- # make bins along student-teacher ratio
257
- bins = np.linspace(df['Student_teacher_ratio'].min(),df['Student_teacher_ratio'].max(), 10)
258
-
259
- # make pivot table
260
- table = df.pivot_table(index='State', columns=pd.cut(df['Student_teacher_ratio'], bins), aggfunc='size')
261
-
262
- # our plotting code before was:
263
- st.code("""
264
- import matplotlib.pyplot as plt
265
-
266
- fig,ax = plt.subplots(figsize=(10,8))
267
- ax.imshow(table.values, cmap='hot', interpolation='nearest')
268
- ax.set_yticks(range(len(table.index)))
269
- ax.set_yticklabels(table.index)
270
- plt.show()
271
- """)
272
-
273
- st.write("Let's translate it into something that will work with Streamlit:")
274
-
275
- import matplotlib.pyplot as plt
276
-
277
- fig,ax = plt.subplots() # this changed
278
- ax.imshow(table.values, cmap='hot', interpolation='nearest')
279
- ax.set_yticks(range(len(table.index)))
280
- ax.set_yticklabels(table.index)
281
-
282
- st.pyplot(fig) # this is different
283
-
284
- st.markdown("""But this is too big! The trick is that we can save this as a buffer: """)
285
-
286
- from io import BytesIO
287
-
288
- fig,ax = plt.subplots(figsize=(4,8)) # this changed
289
- ax.imshow(table.values, cmap='hot', interpolation='nearest')
290
- ax.set_yticks(range(len(table.index)))
291
- ax.set_yticklabels(table.index)
292
-
293
- buf = BytesIO()
294
- fig.tight_layout()
295
- fig.savefig(buf, format="png")
296
- st.image(buf, width = 500) # can mess around with width, figsize/etc
297
-
298
- st.write("Now, let's make this interactive.")
299
- st.markdown("""We'll first use the [multiselect](https://docs.streamlit.io/develop/api-reference/widgets/st.multiselect)
300
- tool in order to allow for multiple state selection. """)
301
-
302
- # vertical alignment so they end up side by side
303
- fig_col, controls_col = st.columns([2,1], vertical_alignment='center')
304
-
305
- # multi-select
306
- states_selected = controls_col.multiselect('Which states do you want to view?', table.index.values)
307
-
308
- if len(states_selected) > 0:
309
- df_subset = df[df['State'].isin(states_selected)] # changed
310
-
311
- # make pivot table -- changed
312
- table_sub = df_subset.pivot_table(index='State',
313
- columns=pd.cut(df_subset['Student_teacher_ratio'], bins),
314
- aggfunc='size')
315
-
316
- base_size = 4
317
- # this resizing doesn't 100% work great
318
- #factor = len(table.index)*1.0/df['State'].nunique()
319
- #if factor == 0: factor = 1 # for non-selections
320
- #fig,ax = plt.subplots(figsize=(base_size,2*base_size*factor)) # this changed too for different size
321
- fig,ax = plt.subplots(figsize=(base_size,2*base_size)) # this changed too for different size
322
- # extent is (xmin, xmax, ymax (buttom), ymin (top))
323
- extent = [bins.min(), bins.max(), 0, len(table_sub.index)]
324
- ax.imshow(table_sub.values, cmap='hot', interpolation='nearest',
325
- extent=extent)
326
- ax.set_yticks(range(len(table_sub.index)))
327
- ax.set_yticklabels(table_sub.index)
328
- #ax.set_xticklabels(bins)
329
-
330
- buf = BytesIO()
331
- fig.tight_layout()
332
- fig.savefig(buf, format="png")
333
- fig_col.image(buf, width = 400) # changed here to fit better
334
- else:
335
- fig,ax = plt.subplots(figsize=(4,8)) # this changed
336
- extent = [bins.min(), bins.max(), 0, len(table.index)]
337
- ax.imshow(table.values, cmap='hot', interpolation='nearest', extent=extent)
338
- ax.set_yticks(range(len(table.index)))
339
- ax.set_yticklabels(table.index)
340
- #ax.set_xticklabels(bins)
341
-
342
- buf = BytesIO()
343
- fig.tight_layout()
344
- fig.savefig(buf, format="png")
345
- fig_col.image(buf, width = 500) # can mess around with width, figsize/etc
346
-
347
-
348
- st.markdown("""
349
- Now let's add more in by including a [range slider](https://docs.streamlit.io/develop/api-reference/widgets/st.slider)
350
- widget.
351
- """)
352
-
353
- # vertical alignment so they end up side by side
354
- fig_col2, controls_col2 = st.columns([2,1], vertical_alignment='center')
355
-
356
- # multi-select
357
- states_selected2 = controls_col2.multiselect('Which states do you want to view?',
358
- table.index.values, key='unik1155')
359
- # had to pass unique key to have double widgets with same value
360
-
361
- # range slider -- added
362
- student_teacher_ratio_range = controls_col2.slider("Range of student teacher ratio:",
363
- df['Student_teacher_ratio'].min(),
364
- df['Student_teacher_ratio'].max(),
365
- (0.25*df['Student_teacher_ratio'].mean(),
366
- 0.75*df['Student_teacher_ratio'].mean()))
367
-
368
- # note all the "2's" here, probably will just update the original one
369
- if len(states_selected2) > 0: # here we set a default value for the slider, so no need to have a tag
370
- min_range = student_teacher_ratio_range[0] # added
371
- max_range = student_teacher_ratio_range[1] # added
372
-
373
- df_subset2 = df[(df['State'].isin(states_selected2)) & (df['Student_teacher_ratio'] >= min_range) & (df['Student_teacher_ratio']<=max_range)] # changed
374
-
375
- # just 10 bins over the full range --> changed
376
- bins2 = 10 #np.linspace(df['Student_teacher_ratio'].min(),df['Student_teacher_ratio'].max(), 10)
377
-
378
- # make pivot table -- changed
379
- table_sub2 = df_subset2.pivot_table(index='State',
380
- columns=pd.cut(df_subset2['Student_teacher_ratio'], bins2),
381
- aggfunc='size')
382
-
383
- base_size = 4
384
- fig2,ax2 = plt.subplots(figsize=(base_size,2*base_size)) # this changed too for different size
385
- extent2 = [df_subset2['Student_teacher_ratio'].min(),
386
- df_subset2['Student_teacher_ratio'].max(),
387
- 0, len(table_sub2.index)]
388
- ax2.imshow(table_sub2.values, cmap='hot', interpolation='nearest', extent=extent2)
389
- ax2.set_yticks(range(len(table_sub2.index)))
390
- ax2.set_yticklabels(table_sub2.index)
391
- #ax2.set_xticklabels()
392
-
393
- buf2 = BytesIO()
394
- fig2.tight_layout()
395
- fig2.savefig(buf2, format="png")
396
- fig_col2.image(buf2, width = 400) # changed here to fit better
397
- else:
398
- min_range = student_teacher_ratio_range[0] # added
399
- max_range = student_teacher_ratio_range[1] # added
400
-
401
- df_subset2 = df[(df['Student_teacher_ratio'] >= min_range) & (df['Student_teacher_ratio']<=max_range)] # changed
402
-
403
- # just 10 bins over the full range --> changed
404
- bins2 = 10 #np.linspace(df['Student_teacher_ratio'].min(),df['Student_teacher_ratio'].max(), 10)
405
-
406
- # make pivot table -- changed
407
- table_sub2 = df_subset2.pivot_table(index='State',
408
- columns=pd.cut(df_subset2['Student_teacher_ratio'], bins2),
409
- aggfunc='size')
410
-
411
- base_size = 4
412
- fig2,ax2 = plt.subplots(figsize=(base_size,2*base_size)) # this changed too for different size
413
- extent2 = [df_subset2['Student_teacher_ratio'].min(),
414
- df_subset2['Student_teacher_ratio'].max(),
415
- 0, len(table_sub2.index)]
416
- ax2.imshow(table_sub2.values, cmap='hot', interpolation='nearest', extent=extent2)
417
- ax2.set_yticks(range(len(table_sub2.index)))
418
- ax2.set_yticklabels(table_sub2.index)
419
- #ax2.set_xticklabels()
420
-
421
- buf2 = BytesIO()
422
- fig2.tight_layout()
423
- fig2.savefig(buf2, format="png")
424
- fig_col2.image(buf2, width = 400) # changed here to fit better
425
-
426
- st.header('Push final page to HF')
427
- st.markdown("""When ready, do:""")
428
- st.code("""
429
- git add -A
430
- git commit -m "final push of day 1"
431
- git push
432
- """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
images/clone_the_repo.png ADDED
images/duplicateSpace_p1.png ADDED
images/duplicateSpace_p2.png ADDED
images/gitclone_hf.png ADDED