Spaces:
Runtime error
Runtime error
feat: uploading food caption classifier model
Browse files- README.md +11 -6
- app.py +46 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.1.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Food Caption Classifier
|
3 |
+
emoji: π¨π±
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.1.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
# π¨π± Food Caption Classifier
|
14 |
+
|
15 |
+
A text classifier model to determine whether a caption is about food or not food.
|
16 |
+
|
17 |
+
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions)
|
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
from typing import Dict
|
6 |
+
|
7 |
+
|
8 |
+
def food_not_food_classifier(text: str) -> Dict[str, float]:
|
9 |
+
# Create the classifier pipeline
|
10 |
+
food_not_food_classifier_pipeline = pipeline(
|
11 |
+
task="text-classification",
|
12 |
+
model="joadithya/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
|
13 |
+
batch_size=32,
|
14 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
15 |
+
top_k=None # Returning all possible labels for a given input
|
16 |
+
)
|
17 |
+
|
18 |
+
# Get the outputs from the pipeline
|
19 |
+
outputs = food_not_food_classifier_pipeline(text)[0]
|
20 |
+
|
21 |
+
# Format output for Gradio
|
22 |
+
output_dict = {}
|
23 |
+
for item in outputs:
|
24 |
+
output_dict[item["label"]] = item["score"]
|
25 |
+
|
26 |
+
return output_dict
|
27 |
+
|
28 |
+
|
29 |
+
description = """
|
30 |
+
A text classifier model to determine whether a caption is about food or not food.
|
31 |
+
|
32 |
+
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions)
|
33 |
+
"""
|
34 |
+
|
35 |
+
demo = gr.Interface(
|
36 |
+
inputs="text",
|
37 |
+
outputs=gr.Label(num_top_classes=2),
|
38 |
+
title="Food Caption Classifier",
|
39 |
+
description=description,
|
40 |
+
examples=[["Nothing beats the taste of home"],
|
41 |
+
["Love served on a plate"],
|
42 |
+
["A toast with cherry on top"]]
|
43 |
+
)
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|