joadithya commited on
Commit
305ba48
Β·
verified Β·
1 Parent(s): 20bdba7

feat: uploading food caption classifier model

Browse files
Files changed (3) hide show
  1. README.md +11 -6
  2. app.py +46 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,12 +1,17 @@
1
  ---
2
- title: Learn Hf Food Caption Text Classifier
3
- emoji: πŸŒ–
4
- colorFrom: green
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 5.1.0
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
1
  ---
2
+ title: Food Caption Classifier
3
+ emoji: 🍨🍱
4
+ colorFrom: blue
5
+ colorTo: purple
6
  sdk: gradio
7
  sdk_version: 5.1.0
8
  app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
  ---
12
 
13
+ # 🍨🍱 Food Caption Classifier
14
+
15
+ A text classifier model to determine whether a caption is about food or not food.
16
+
17
+ Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions)
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import pipeline
4
+
5
+ from typing import Dict
6
+
7
+
8
+ def food_not_food_classifier(text: str) -> Dict[str, float]:
9
+ # Create the classifier pipeline
10
+ food_not_food_classifier_pipeline = pipeline(
11
+ task="text-classification",
12
+ model="joadithya/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
13
+ batch_size=32,
14
+ device="cuda" if torch.cuda.is_available() else "cpu",
15
+ top_k=None # Returning all possible labels for a given input
16
+ )
17
+
18
+ # Get the outputs from the pipeline
19
+ outputs = food_not_food_classifier_pipeline(text)[0]
20
+
21
+ # Format output for Gradio
22
+ output_dict = {}
23
+ for item in outputs:
24
+ output_dict[item["label"]] = item["score"]
25
+
26
+ return output_dict
27
+
28
+
29
+ description = """
30
+ A text classifier model to determine whether a caption is about food or not food.
31
+
32
+ Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions)
33
+ """
34
+
35
+ demo = gr.Interface(
36
+ inputs="text",
37
+ outputs=gr.Label(num_top_classes=2),
38
+ title="Food Caption Classifier",
39
+ description=description,
40
+ examples=[["Nothing beats the taste of home"],
41
+ ["Love served on a plate"],
42
+ ["A toast with cherry on top"]]
43
+ )
44
+
45
+ if __name__ == "__main__":
46
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ torch
3
+ transformers