tiebreak_model / app.py
joaomaia's picture
Update app.py
dcbfdda verified
raw
history blame
1.77 kB
import gradio as gr
import joblib
import numpy as np
# Carregar o modelo serializado
model = joblib.load("tiebreak_model.pkl")
# Função para realizar a previsão
def predict_tiebreak(win_odds_input, loser_odds_input):
# Converter vírgulas para pontos caso necessário
win_odds_input = str(win_odds_input).replace(',', '.')
loser_odds_input = str(loser_odds_input).replace(',', '.')
# Converter para float
win_odds = float(win_odds_input)
loser_odds = float(loser_odds_input)
# Calculando as features
odds_ratio = win_odds / loser_odds
log_odds_w = np.log(win_odds)
log_odds_l = np.log(loser_odds)
prob_w = 1 / win_odds
prob_l = 1 / loser_odds
odds_spread = abs(loser_odds - win_odds)
# Criando o vetor de features para o modelo
features = np.array([[odds_ratio, log_odds_w, log_odds_l, prob_w, prob_l, odds_spread]])
# Realizando a previsão
prob = model.predict_proba(features)[0, 1] # Probabilidade da classe 1 (menos de 1.5 tiebreaks)
# Calculando a odds mínima
odds_minima = 1 / prob
# Formatando a probabilidade para percentual com duas casas decimais
prob_percent = f"{round(prob * 100, 2)}%"
# Retornando os valores
return prob_percent, round(odds_minima, 2)
# Interface Gradio
inputs = [gr.Number(label="Win Odds"), gr.Number(label="Loser Odds")]
outputs = [gr.Textbox(label="Probabilidade de menos de 1.5 Tiebreaks"), gr.Textbox(label="Odds Mínima")]
# Criação da interface
gr.Interface(fn=predict_tiebreak, inputs=inputs, outputs=outputs, title="Previsão de Tiebreaks",
description="Insira as odds de vitória e derrota para prever a probabilidade de haver menos de 1.5 tiebreaks e calcular as odds mínimas.").launch()