import gradio as gr import joblib import numpy as np # Carregar o modelo serializado model = joblib.load("tiebreak_model.pkl") # Função para realizar a previsão def predict_tiebreak(win_odds, loser_odds): # Calculando as features odds_ratio = win_odds / loser_odds log_odds_w = np.log(win_odds) log_odds_l = np.log(loser_odds) prob_w = 1 / win_odds prob_l = 1 / loser_odds odds_spread = abs(loser_odds - win_odds) # Criando o vetor de features para o modelo features = np.array([[odds_ratio, log_odds_w, log_odds_l, prob_w, prob_l, odds_spread]]) # Realizando a previsão prob = model.predict_proba(features)[0, 1] # Probabilidade da classe 1 (menos de 1.5 tiebreaks) # Calculando a odds mínima odds_minima = 1 / prob # Retornando os valores arredondados return round(prob, 2), round(odds_minima, 2) # Interface Gradio inputs = [gr.inputs.Number(label="Win Odds"), gr.inputs.Number(label="Loser Odds")] outputs = [gr.outputs.Textbox(label="Probabilidade de menos de 1.5 Tiebreaks"), gr.outputs.Textbox(label="Odds Mínima")] # Criação da interface gr.Interface(fn=predict_tiebreak, inputs=inputs, outputs=outputs, title="Previsão de Tiebreaks", description="Insira as odds de vitória e derrota para prever a probabilidade de haver menos de 1.5 tiebreaks e calcular as odds mínimas.").launch()