Commit
·
d21c9dd
1
Parent(s):
23fee25
Implement download log functionality
Browse files
app.py
CHANGED
@@ -21,6 +21,21 @@ logs_columns = ['Abstract', 'Model', 'Results']
|
|
21 |
logs_df = PandasDataFrame(columns=logs_columns)
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def build_context(row):
|
25 |
subsector_name = row['Subsector']
|
26 |
context = f"Subsector name: {subsector_name}. "
|
@@ -67,7 +82,7 @@ def on_select(evt: gr.SelectData): # SelectData is a subclass of EventData
|
|
67 |
return name_accordion, definition, keywords, does_include, does_not_include
|
68 |
|
69 |
|
70 |
-
#
|
71 |
with gr.Blocks(css=css, js=js) as demo:
|
72 |
state_lotto = gr.State()
|
73 |
selected_x_labels = gr.State()
|
@@ -114,6 +129,7 @@ with gr.Blocks(css=css, js=js) as demo:
|
|
114 |
label_result = gr.Label(num_top_classes=None)
|
115 |
with gr.Column(scale=6):
|
116 |
reasoning = gr.Markdown(label="Reasoning", elem_classes=['reasoning_results'])
|
|
|
117 |
with gr.Tab("Subsector definitions"):
|
118 |
with gr.Row():
|
119 |
with gr.Column(scale=4):
|
@@ -125,20 +141,30 @@ with gr.Blocks(css=css, js=js) as demo:
|
|
125 |
value="Mixed Reality, 360 video, frame rate, metaverse, virtual world, cross reality, Artificial intelligence, computer vision")
|
126 |
does_include = gr.Textbox(label="Does include", lines=4)
|
127 |
does_not_include = gr.Textbox(label="Does not include", lines=3)
|
|
|
128 |
with gr.Tab("Logs"):
|
129 |
output_dataframe = gr.Dataframe(
|
130 |
value=logs_df,
|
131 |
type="pandas",
|
132 |
height=500,
|
133 |
-
headers=
|
134 |
interactive=False,
|
135 |
column_widths=["45%", "10%", "45%"],
|
136 |
)
|
|
|
|
|
|
|
|
|
137 |
|
138 |
btn_get_result.click(
|
139 |
fn=click_button,
|
140 |
inputs=[dropdown_model, api_key, abstract_description],
|
141 |
outputs=[label_result, reasoning, output_dataframe])
|
|
|
|
|
|
|
|
|
|
|
142 |
df_subsectors.select(
|
143 |
fn=on_select,
|
144 |
outputs=[subsector_name, s1_definition, s1_keywords, does_include, does_not_include]
|
|
|
21 |
logs_df = PandasDataFrame(columns=logs_columns)
|
22 |
|
23 |
|
24 |
+
def download_logs():
|
25 |
+
global logs_df
|
26 |
+
# Check for the current operating system's desktop path
|
27 |
+
if os.name == 'nt': # For Windows
|
28 |
+
desktop = os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop')
|
29 |
+
else: # For macOS and Linux
|
30 |
+
desktop = os.path.join(os.path.join(os.path.expanduser('~')), 'Desktop')
|
31 |
+
|
32 |
+
# Define the path to save the CSV file on the desktop
|
33 |
+
file_path = os.path.join(desktop, 'classification_logs.csv')
|
34 |
+
|
35 |
+
# Save the DataFrame to the CSV file on the desktop
|
36 |
+
logs_df.to_csv(file_path)
|
37 |
+
|
38 |
+
|
39 |
def build_context(row):
|
40 |
subsector_name = row['Subsector']
|
41 |
context = f"Subsector name: {subsector_name}. "
|
|
|
82 |
return name_accordion, definition, keywords, does_include, does_not_include
|
83 |
|
84 |
|
85 |
+
# --- GRADIO INTERFACE --- #
|
86 |
with gr.Blocks(css=css, js=js) as demo:
|
87 |
state_lotto = gr.State()
|
88 |
selected_x_labels = gr.State()
|
|
|
129 |
label_result = gr.Label(num_top_classes=None)
|
130 |
with gr.Column(scale=6):
|
131 |
reasoning = gr.Markdown(label="Reasoning", elem_classes=['reasoning_results'])
|
132 |
+
|
133 |
with gr.Tab("Subsector definitions"):
|
134 |
with gr.Row():
|
135 |
with gr.Column(scale=4):
|
|
|
141 |
value="Mixed Reality, 360 video, frame rate, metaverse, virtual world, cross reality, Artificial intelligence, computer vision")
|
142 |
does_include = gr.Textbox(label="Does include", lines=4)
|
143 |
does_not_include = gr.Textbox(label="Does not include", lines=3)
|
144 |
+
|
145 |
with gr.Tab("Logs"):
|
146 |
output_dataframe = gr.Dataframe(
|
147 |
value=logs_df,
|
148 |
type="pandas",
|
149 |
height=500,
|
150 |
+
headers=['Abstract', 'Model', 'Results'],
|
151 |
interactive=False,
|
152 |
column_widths=["45%", "10%", "45%"],
|
153 |
)
|
154 |
+
btn_export = gr.Button(
|
155 |
+
value="Export to CSV",
|
156 |
+
size="sm",
|
157 |
+
)
|
158 |
|
159 |
btn_get_result.click(
|
160 |
fn=click_button,
|
161 |
inputs=[dropdown_model, api_key, abstract_description],
|
162 |
outputs=[label_result, reasoning, output_dataframe])
|
163 |
+
|
164 |
+
btn_export.click(
|
165 |
+
fn=download_logs,
|
166 |
+
)
|
167 |
+
|
168 |
df_subsectors.select(
|
169 |
fn=on_select,
|
170 |
outputs=[subsector_name, s1_definition, s1_keywords, does_include, does_not_include]
|