Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +44 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chat_models import ChatOpenAI
|
2 |
+
# from langchain_community.document_loaders import WebBaseLoader
|
3 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
import gradio as gr
|
5 |
+
from langchain_pinecone import Pinecone
|
6 |
+
from langchain_openai import OpenAIEmbeddings , ChatOpenAI
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
import os
|
10 |
+
|
11 |
+
os.environ["PINECONE_API_KEY"] = "9952de06-975b-4ca4-9908-491e8d08328a"
|
12 |
+
os.environ["OPENAI_API_KEY"]="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"
|
13 |
+
|
14 |
+
|
15 |
+
# create embeddings and store in vector database (Pinecone)
|
16 |
+
embeddings=OpenAIEmbeddings()
|
17 |
+
#docsearch=Pinecone.from_texts([t.page_content for t in document_chunks],embeddings,index_name="index_name")
|
18 |
+
|
19 |
+
|
20 |
+
llm = ChatOpenAI(temperature=0, model='gpt-3.5-turbo-16k')
|
21 |
+
# If you already have embeddings stored , you can load it using below code
|
22 |
+
vector_search=Pinecone.from_existing_index("erginouswebsite",embeddings)
|
23 |
+
|
24 |
+
template = """You are provided with a content related to the company. You will be asked any question related to the company. If you don't know ,just say I don't know the answer'.
|
25 |
+
{context}
|
26 |
+
Question: {question}
|
27 |
+
Helpful Answer:"""
|
28 |
+
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["question"],template=template)
|
29 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=vector_search.as_retriever(),chain_type_kwargs={"prompt": QA_CHAIN_PROMPT})
|
30 |
+
|
31 |
+
def predict(message, history):
|
32 |
+
gpt_response = qa.invoke(message)
|
33 |
+
return gpt_response['result']
|
34 |
+
|
35 |
+
gr.ChatInterface(predict,chatbot=gr.Chatbot(height=300),
|
36 |
+
textbox=gr.Textbox(placeholder="Ask me a question", container=False, scale=7),
|
37 |
+
title="AI Assistant Chatbot",
|
38 |
+
description="Chatbot AI Assistant",
|
39 |
+
theme="soft",
|
40 |
+
examples=["Provide address of the company", "Solutions provided by the company", "Career opportunities in company"],
|
41 |
+
cache_examples=True,
|
42 |
+
retry_btn=None,
|
43 |
+
undo_btn="Delete Previous",
|
44 |
+
clear_btn="Clear",).launch(share=True , server_name="0.0.0.0" ,server_port=8080)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain_pinecone
|
2 |
+
python-dotenv
|
3 |
+
langchain_openai
|
4 |
+
gradio
|