import sys import onnxruntime as ort import numpy as np import string # Transformers, HuggingFace Hub, and Gradio from transformers import AutoTokenizer import gradio as gr from huggingface_hub import InferenceClient # ------------------------------------------------ # Turn Detector Configuration # ------------------------------------------------ HG_MODEL = "livekit/turn-detector" # or your HF model repo ONNX_FILENAME = "model_quantized.onnx" # path to your ONNX file MAX_HISTORY_TOKENS = 512 PUNCS = string.punctuation.replace("'", "") # ------------------------------------------------ # Utility functions # ------------------------------------------------ def softmax(logits: np.ndarray) -> np.ndarray: exp_logits = np.exp(logits - np.max(logits)) return exp_logits / np.sum(exp_logits) def normalize_text(text: str) -> str: """Lowercase, strip punctuation (except single quotes), and collapse whitespace.""" def strip_puncs(text_in): return text_in.translate(str.maketrans("", "", PUNCS)) return " ".join(strip_puncs(text).lower().split()) def calculate_eou(chat_ctx, session, tokenizer) -> float: """ Given a conversation context (list of dicts with 'role' and 'content'), returns the probability that the user is finished speaking. """ # Collect normalized messages from 'user' or 'assistant' roles normalized_ctx = [] for msg in chat_ctx: if msg["role"] in ("user", "assistant"): content = normalize_text(msg["content"]) if content: normalized_ctx.append(content) # Join them into one input string text = " ".join(normalized_ctx) inputs = tokenizer( text, return_tensors="np", truncation=True, max_length=MAX_HISTORY_TOKENS, ) input_ids = np.array(inputs["input_ids"], dtype=np.int64) # Run inference outputs = session.run(["logits"], {"input_ids": input_ids}) logits = outputs[0][0, -1, :] # Softmax over logits probs = softmax(logits) # The ID for the <|im_end|> special token eou_token_id = tokenizer.encode("<|im_end|>")[-1] return probs[eou_token_id] # ------------------------------------------------ # Load ONNX session & tokenizer once # ------------------------------------------------ print("Loading ONNX model session...") onnx_session = ort.InferenceSession( ONNX_FILENAME, providers=["CPUExecutionProvider"]) print("Loading tokenizer...") turn_detector_tokenizer = AutoTokenizer.from_pretrained(HG_MODEL) # ------------------------------------------------ # HF InferenceClient for text generation (example) # ------------------------------------------------ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Adjust above to any other endpoint that suits your use case. # ------------------------------------------------ # Gradio Chat Handler # ------------------------------------------------ def respond(message, history, system_message, max_tokens, temperature, top_p): """ This function is called on each new user message in the ChatInterface. - 'message' is the new user input - 'history' is a list of (user, assistant) tuples - 'system_message' is from the system Textbox - max_tokens, temperature, top_p come from the Sliders """ # 1) Build a list of messages in the OpenAI-style format: # [{'role': 'system', 'content': ...}, # {'role': 'user', 'content': ...}, ...] messages = [ {"role": "user", "content": message} ] if system_message.strip(): messages.insert(0, {"role": "system", "content": system_message}) # history is a list of tuples: [(user1, assistant1), (user2, assistant2), ...] """ for user_text, assistant_text in history: if user_text: messages.append({"role": "user", "content": user_text}) if assistant_text: messages.append({"role": "assistant", "content": assistant_text}) # Append the new user message messages.append({"role": "user", "content": message}) """ # 2) Calculate EOU probability on the entire conversation eou_prob = calculate_eou(messages, onnx_session, turn_detector_tokenizer) # 3) Generate the assistant response from your HF model. # (This code streams token-by-token.) response = "" yield f"[EOU Probability: {eou_prob:.4f}]" # ------------------------------------------------ # Gradio ChatInterface # ------------------------------------------------ """ This ChatInterface will have: - A chat box - A system message textbox - 3 sliders for max_tokens, temperature, and top_p """ demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox( value="You are a friendly Chatbot.", label="System message", lines=2 ), gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], ) if __name__ == "__main__": demo.launch()